Tim Min của
x^2 - 3x +3 và x^2 +5x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuyet Anh Nguyen
1.a)(3x-2)(4x+5)=0
12x^2+7x-10=0>>x1=2/3,x2=-5/4
b)4x^3+2x^2+4x+2=0>>x=-1
c)0,23x^2-4,21x-13,8=0>>x1=21,14,x2=-2,8...
d)10x^3-13x^2-178x-35=0>>x1=5,x2=-1/5
b2/a)2x^3+5x^2-3x=0>>x1=1/2,x2=-3
b)(3x-1)(x^2-7x+12)=0>>x1=1/3,x2=4,x3=...
b3/
a)x^2+x-2=0>>x1=1,x2=-2
b)x1=-1,x2=-6
b4/a)0,5x^2-1,5x-1,5x^2+x+4,5x-3=0>>-x...
b)3x/7-1=3x/7-x>>x=1
c)2x^2-13x+15=0>>x1=5,x2=3/2
P/s: Tham khảo nha
\(dkxđ\Leftrightarrow\left\{{}\begin{matrix}-x^2+5x\ge0\\-x^2+3x+18\ge0\end{matrix}\right.\)\(\Rightarrow0\le x\le5\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\le5\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
\(\sqrt{5x-x^2}=\sqrt{-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)}=\sqrt{-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\right]}=\sqrt{-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}}\ge0\left(1\right)\)
\(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)
\(\sqrt{-x^2+3x+18}=\sqrt{-\left(x^2-3x-18\right)}=\sqrt{-\left[x^2-3x+\dfrac{9}{4}-\dfrac{81}{4}\right]}=\sqrt{-\left(x-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}\ge\sqrt{-\left(5-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}=\sqrt{8}\left(2\right)\)
dấu"=" xảy ra \(< =>x=5\)
\(\left(1\right)\left(2\right)\Rightarrow A\ge\sqrt{8}\) \(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)\(\Rightarrow MinA=\sqrt{8}\)
\(\left(maxA=\sqrt{48}\right)dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=\dfrac{15}{7}\)
\(\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
a, \(3x^3-5x^2-x-2>0\)
\(< =>3x^3+x^2+x-6x^2-2x-2>0\)
\(< =>x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)>0\)
\(< =>\left(x-2\right)\left(3x^2+x+1\right)>0\)
có \(3x^2+x+1=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{3}\right)=3\left[x^2+2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{35}{36}\right]\)
\(=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{35}{36}\right]>0=>x-2>0< =>x>2\)
b, \(A=2x^2+y^2-2xy-2x+3\)
\(A=x^2-2xy+y^2+x^2-2x+1+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
dấu"=" xảy ra<=>\(x=y=1\)
a) Đặt A = \(x^2-3x+3\)
\(\Rightarrow A=x^2-3x+2,25+1,5\)
\(\Rightarrow A=\left(x-1,5\right)^2+1,5\)
Ta có: \(\left(x-1,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1,5\right)^2+1,5\ge1,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=1,5\)
Vậy \(MIN\) \(A=1,5\) \(\Leftrightarrow\) \(x=1,5\)
b) Đặt \(B=x^2+5x+5\)
\(\Rightarrow B=x^2+5x+6,25-1,25\)
\(\Rightarrow B=\left(x+2,5\right)^2-1,25\)
Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2,5\right)^2-1,25\ge-1,25\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2,5\)
Vậy \(MIN\) \(B=-1,25\Leftrightarrow x=-2,5\)