BT1: Tính
S= \(\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Ta thấy :
\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)
từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Xét khai triển:
\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)
Lấy tích phân 2 vế:
\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)
\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)
Vậy \(S=\dfrac{2^{2018}-1}{2018}\)
So sánh S với 2 biết :
S = \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2017}{2^{2017}}\)
Giải:
\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\)
Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
Ta có:
\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\)
\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\)
\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\)
\(=\dfrac{n}{2^n}\)
\(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)
\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\)
\(S=2-\dfrac{2019}{2017}\)
\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\)
Hay \(S< 2\)
\(S=\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\Rightarrow2S=\dfrac{2.\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(2S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}\)
\(\Rightarrow2S-S=S=\dfrac{2^2+2^3+2^4+...+2^{2018}}{1-2^{2017}}-\dfrac{2+2^2+2^3+...+2^{2017}}{1-2^{2017}}\)
\(S=\dfrac{\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)}{1-2^{2017}}\)
\(S=\dfrac{2^{2018}-2}{1-2^{2017}}=\dfrac{-2\left(1-2^{2017}\right)}{1-2^{2017}}=-2\) vậy \(S=-2\)