giải phương trình vô tỉ sau
\(15x^2+2\left(x-1\right)\sqrt{x+2}=2x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)
đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)
\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)
<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2
<=>b2-2abc+a2c2=0
<=>(b-ac)2=0
<=>b=ac
đến đây thì dễ rồi
toán lớp 9 thì ai mà biết chỉ lớp 5 thôi
đáp án là : 0 bít !
\(\sqrt{x^3+1}\left(4x-1\right)=2x^3+x^2+1\)
\(pt\Leftrightarrow\sqrt{x^3+1}=\frac{2x^3+x^2+1}{4x-1}\)
\(\Leftrightarrow\sqrt{x^3+1}-\left(x+1\right)=\frac{2x^3+x^2+1}{4x-1}-\left(x+1\right)\)
\(\Leftrightarrow\frac{x^3+1-\left(x+1\right)^2}{\sqrt{x^3+1}+x+1}=\frac{2x^3-3x^2-3x+2}{4x-1}\)
\(\Leftrightarrow\frac{x^3-x^2-2x}{\sqrt{x^3+1}+x+1}-\frac{2x^3-3x^2-3x+2}{4x-1}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)\left(x+1\right)}{\sqrt{x^3+1}+x+1}-\frac{\left(x+1\right)\left(x-2\right)\left(2x-1\right)}{4x-1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(\frac{x}{\sqrt{x^3+1}+x+1}-\frac{2x-1}{4x-1}\right)=0\)
Suy ra x=2;x=-1 còn 1 nghiệm nữa xấu quá t gg :v
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề