NHANH HỘ MÌNH VỚI !!!
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB:AC = 3:7, AH = 42cm. Tính HB, HC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)
\(\Leftrightarrow BH=\dfrac{9}{49}CH\)
Ta có: \(BH\cdot CH=AH^2\)
\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)
\(\Leftrightarrow CH^2=9604\)
\(\Leftrightarrow CH=98\left(cm\right)\)
\(\Leftrightarrow BH=18\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có
AH chung
HB=HK
Do đó: ΔAHB=ΔAHK
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
a) -△ABC và △HAC có: \(\widehat{BAC}=\widehat{AHC}=90^0\); \(\widehat{C}\) là góc chung.
\(\Rightarrow\)△ABC∼△HAC (g-g)
b)\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=BC.CH=13.4=52\Rightarrow AC=\sqrt{52}\left(cm\right)\)
c) \(\widehat{AHE}=90^0-\widehat{AHF}=\widehat{CHF}\).
-△AHE và △CHF có: \(\widehat{AHE}=\widehat{CHF}\); \(\widehat{HAE}=\widehat{HCF}\) (△ABC∼△HAC)
\(\Rightarrow\)△AHE∼△CHF (g-g) \(\Rightarrow\dfrac{AH}{CH}=\dfrac{AE}{CF}\Rightarrow AE.CH=AH.FC\).
d) -Gọi G là giao của AB và HF.
-△GAF và △GHE có: \(\widehat{GAF}=\widehat{GHE}=90^0\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GAF∼△GHE (g-g) \(\Rightarrow\dfrac{GA}{GH}=\dfrac{GF}{GE}\Rightarrow\dfrac{GA}{GF}=\dfrac{GH}{GE}\)
-△GEF và △GHA có: \(\dfrac{GA}{GF}=\dfrac{GH}{GE}\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GEF∼△GHA (c-g-c) \(\Rightarrow\widehat{GFE}=\widehat{GAH}\).
\(\widehat{GAH}=90^0-\widehat{CAH}=\widehat{ACB}\Rightarrow\widehat{GFE}=\widehat{ACB}\).
-△HEF và △ABC có: \(\widehat{EHF}=\widehat{BAC}=90^0;\widehat{HFE}=\widehat{ACB}\).
\(\Rightarrow\)△HEF∼△ABC (g-g) \(\Rightarrow\dfrac{S_{HEF}}{S_{ABC}}=\dfrac{HE}{AB}\Rightarrow S_{HEF}=\dfrac{HE}{AB}.S_{ABC}\)
-Qua H kẻ đg thẳng vuông góc với AB tại E' \(\Rightarrow HE\ge HE'\)
\(\Rightarrow S_{HEF}\ge\dfrac{HE'}{AB}.S_{ABC}\).
-\(S_{HEF}\) có diện tích nhỏ nhất \(\Leftrightarrow E\equiv E'\Leftrightarrow\)E là hình chiếu của H lên AB.
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
nên \(\dfrac{HB}{HC}=\dfrac{9}{49}\)
hay \(HB=\dfrac{9}{49}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{9}{49}=42^2\)
hay HC=98cm
\(\Leftrightarrow HB=\dfrac{9}{49}\cdot98=18cm\)
Ta có:\(\dfrac{AB}{AC}=\dfrac{3}{7}\) ⇒ AB = \(\dfrac{3}{7}\) AC
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{42^2}=\dfrac{49}{9AC^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{42^2}=\dfrac{49}{9AC^2}\)
⇔ \(AC^2=11368\Leftrightarrow AC=14\sqrt{58}\) \(\left(cm\right)\)
⇔ \(AB=\dfrac{3}{7}.14\sqrt{58}=6\sqrt{58}\) \(\left(cm\right)\)
Áp dụng định lý Pytago cho ABH vuông tại A có: \(AB^2+AC^2=BC^2\)
⇔ \(BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2\)
⇔ \(BC^2=13456\Rightarrow BC=116\) \(cm\)
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có: