K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

14 tháng 10 2016

\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)

\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1

Suy ra tích này chia hết cho 3x4x5 = 60 (1)

Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)

Từ (1) và (2) suy ra đpcm

2 tháng 11 2016

Cho hình thoi ABCD có cạnh là a. Gọi r1 và rlaf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.

cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)

\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)

6 tháng 11 2023

Llklkksd

22 tháng 3 2017

n sẽ bằng 2

18 tháng 11 2021

 (n+7)2-(n+5)2

=[(n+7)+(n-5)].[(n+7)-(n-5)]

=(n+7+n+5).(n+7-n+5)

=(2n+2)12

=2(n+1)12

=24(n+1)

Vậy, đa thức trên chia hết cho 24 với mọi n

 

a) 2 hoặc -1

b)M={-3;-2;0;1;3;4;5}