K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/26+1/27+1/28+...+1/49+1/50
2/26+2/28+2/30+...+2/50
<=>1/13+1/14+1/15+...+1/25
<=>2/14+2/16+2/18+...2/24
<=>1/7+1/8+1/9+...+1/12
<=>2/8+2/10+2/12
<=>1/4+1/5+1/6
<=>2/4+2/6
<=>1/2+1/3
<=> 2/2 = 1

24 tháng 8 2021

1/26+1/27+1/28+...+1/49+1/50

=1-1/2+1/3-1...2/26+2/28+2/30+...+2/50=1-1/2+1/3-1...
=1/13+1/14+1/15+...+1/25=1-1/2+1/3-1...
=2/14+2/16+2/18+...2/24=1-1/2+1/3-1/...
=1/7+1/8+1/9+...+1/12=1-1/2+1/3-1/4+...
=2/8+2/10+2/12=1-1/2+1/3-1/4+1/5-1/6
=1/4+1/5+1/6=1-1/2+1/3-1/4+1/5-1/6
=2/4+2/6=1-1/2+1/3
=1/2+1/3=1-1/2+1/3
= 2/2 = 1

21 tháng 4 2016

Ta có:

\(M=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(M=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=N\)

\(\Rightarrow\frac{M}{N}=1\)

5 tháng 9 2016

Ta biến đổi vế phải : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\\ \)\(\\ =\left(1+\frac{1}{3}+\frac{1}{5}+........+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{50}\right)\\ =\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{25}\right)\\ =\frac{1}{26}+\frac{1}{27}+.....+\frac{1}{50}\)

Vậy \(\frac{1}{26}+\frac{1}{27}+.....+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

5 tháng 9 2016

Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)

=> \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\) ( đpcm )

Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)(đpcm)

28 tháng 6 2021

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)   (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
Ta có:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}$

$=(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25})$

$=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}$

4 tháng 7 2016

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

4 tháng 7 2016

Tự hỏi tự trả lời