K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

=>x+1=2017

hay x=2016

1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{2}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{1.2}{1.2}\) + \(\dfrac{1.2}{2.3}\) + \(\dfrac{1.2}{3.4}\) + \(\dfrac{1.2}{4.5}\) + ... + \(\dfrac{1.2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> 2(\(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{x\left(x+1\right)}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{x+1}\)) = \(\dfrac{4032}{2017}\)

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{4032}{2017}\) : 2

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2017}\)

=> x + 1 = 2017

=> x = 2017 - 1

=> x = 2016

9 tháng 4 2018

Hay bay!!! haha

14 tháng 8 2018

Sửa đề:\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)
\(\Leftrightarrow1-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{x}-\dfrac{2}{x+1}=\dfrac{2015}{2017}\)

\(\Leftrightarrow1-\dfrac{2}{x+1}=\dfrac{2015}{2017}\Leftrightarrow\dfrac{2}{x+1}=1-\dfrac{2015}{2017}=\dfrac{2}{2017}\)

Do \(\dfrac{2}{x+1}=\dfrac{2}{2017}\Rightarrow x+1=2017\Leftrightarrow x=2016\)

14 tháng 8 2018

Bạn bỏ chữ sửa đề đi giùm mình!!!! Lúc đầu tưởng đề sai nên để chữ sửa đề và đổi đề khác sau đó thấy đề đúng nên vẫn đề cũ nên quên bỏ chữ "Sửa đề"

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)

\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)

Do đó:

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)

\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)

............

\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)

Cộng theo vế:

\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)

\(=\underbrace{1+1+1...+1}_{1008}=1008\)

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)

\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)

\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)

6 tháng 5 2017

a) Vì \(\dfrac{x+5}{3}\)= \(\dfrac{x-6}{7}\) nên 7(x+5) = 3(x-6)

=> 7x+ 35 = 3x - 18

7x - 3x = -18 -35

4x = -53

x = -53:4

x = \(\dfrac{-53}{4}\)

a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)

\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)

=>x=13/12

b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)

\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)

\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)

\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)

\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)

d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)

\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)

\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)

e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)

=>x+2020=0

hay x=-2020

mn ghi giúp em chi tiết bài giải nx ạ! 

8 tháng 3 2022

undefined

7 tháng 5 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow2.\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2017}{4038}\\ \Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2019}\\ \Rightarrow x=2018\)

31 tháng 5 2017

ĐKXĐ: \(x\ge0,x\ne1\)

\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)

= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)

= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{x+2}{\sqrt{x}-1}\)