a)\(\sqrt{4x}\le162\)
b) 2\(\sqrt{x}\ge\sqrt{10}\)
c) 3\(\sqrt{x}=\sqrt{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√25x = 35
⇔5√x = 35
⇔√x = 7
⇔x = 49
b)√4x ≤ 162
⇔2√x ≤ 162
⇔√x ≤ 81
⇔x ≤ 6561
Suy ra : 0 ≤ x ≤ 6561
c)3√x = 12
⇔3√x = 2√3
⇔√x = 23√3
⇔x = (23√3)2
⇔x = −43
d) 2√x ≥ √10
⇔√x ≥ √102
⇔ x = 52
\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}=\sqrt{16.5}+\sqrt{9.5}+\sqrt{5}\)
\(=4\sqrt{5}+3\sqrt{5}+\sqrt{5}=8\sqrt{5}\)
\(B=\frac{5}{\sqrt{10}}+3,5\sqrt{40}=\sqrt{\frac{25}{10}}+3,5\sqrt{16.2,5}\)
\(=\sqrt{2,5}+3,5.4\sqrt{2,5}=15\sqrt{2,5}\)
\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)
\(=\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{100.3}}{10}-\sqrt{4.3}\)
\(=-\sqrt{3}-2+\sqrt{3}-2\sqrt{3}=-2\sqrt{3}-2\)
\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}=4\sqrt{x}+2x-4\sqrt{x}=2x\) ( do \(x\ge0\))
\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}.\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=\sqrt{a}\)
mk chỉnh đề
\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+4}\)
\(=\sqrt{25\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}\)
\(=5\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\)
\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}=\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}-\frac{2\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)
\(=\sqrt{3}-\sqrt{5}-\sqrt{5}-\sqrt{7}=\sqrt{3}-\sqrt{7}\)
1.ĐK: \(x\ge\dfrac{1}{4}\)
bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)
\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)
\(\Leftrightarrow20x^2-x-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)
2.ĐK: \(-2\le x\le\dfrac{5}{2}\)
bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)
\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)
\(\Leftrightarrow x^2< -x^2+x+6\)
\(\Leftrightarrow-2x^2+x+6>0\)
\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)
3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)
.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)
\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)
*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)
*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)
a.\(\sqrt{\left(2x-1\right)^2}-2x+3\)
\(=2x-1-2x+3=2\)(vì x\(\ge\)1/2 nên 2x-1\(\ge\)0)
b.\(B=\sqrt{\frac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}}\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{\frac{33+11\sqrt{5}}{11}}\left(\sqrt{10}-\sqrt{2}\right)=\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)=\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)
a) Ta có: \(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
hay x=-28
b) Ta có: \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}+10=10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)
\(\Leftrightarrow3x=96\)
hay x=32
c) Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
\(a,\Leftrightarrow4x\le26244\\ \Leftrightarrow x\le6561\)
\(b,\Leftrightarrow4x\ge10\\ \Leftrightarrow x\ge2.5\)
\(c,\Leftrightarrow9x=12\\ \Leftrightarrow x=\dfrac{4}{3}\)