K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

 

Theo viet ta có

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Ta có: \(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)

\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)

\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\)             \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)

\(\Rightarrow x_1x_2=12=-2m\)

\(\Rightarrow m=-6\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)

\(\Rightarrow x_1.x_2=0=-2m\)

\(\Rightarrow m=0\)

Vậy \(m=0;m=-6\)

-Chúc bạn học tốt-

4 tháng 6 2021

Thank bạn 

 

23 tháng 7 2021

còn cái nịt

NV
22 tháng 1 2024

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

3 tháng 7 2021

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)

Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4>0\left(lđ\right)\)

\(\Rightarrow\)Pt luôn có hai ng pb với mọi m

\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)

Có \(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)

\(\Leftrightarrow2=4m+2\)

\(\Leftrightarrow m=0\)

Vậy...

3 tháng 7 2021

Tham khảo 

Tìm m để phương trình x2 – 2(2m + 1)x + 4m2 + 4m = 0 

b: x1=3x2 và x1+x2=2m-2

=>3x2+x2=2m-2 và x1=3x2

=>x2=0,5m-0,5 và x1=1,5m-1,5

x1*x2=-2m

=>-2m=(0,5m-0,5)(1,5m-1,5)

=>-2m=0,75(m^2-2m+1)

=>0,75m^2-1,5m+0,75+2m=0

=>\(m\in\varnothing\)

c: x1/x2=3

x1+x2=2m-2

=>x1=3x2 và x1+x2=2m-2

Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn