K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(x^2-3x-\sqrt{x^2-3x+4}+2=0\) ĐK : \(x^2-3x+4\ge0\)

\(\Leftrightarrow x^2-3x+2=\sqrt{x^2-3x+4}\)

\(\Leftrightarrow x^2-3x+4-2=\sqrt{x^2-3x+4}\)

Đặt : \(\sqrt{x^2-3x+4}=t\) \(\left(t\ge0\right)\)

\(pt\Leftrightarrow t^2-2=t\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-1\left(l\right)\end{matrix}\right.\)

Với \(t=2\Rightarrow\sqrt{x^2-3x+4}=2\)

\(\Leftrightarrow x^2-3x+4=4\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

3 tháng 8 2017

Ta có: \(x^2-3x-\sqrt{x^2-3x+4}+2=0\)

\(x^2-3x+4-\sqrt{x^2-3x+4}-2=0\)

Đặt \(t=\sqrt{x^2-3x+4}\left(t\ge0\right)\)

Ta có: \(t^2-t-2=0\)

\(1+\left(-2\right)-\left(-1\right)=0\)

\(\Rightarrow\)pt có 2 nghiệm.

\(\left[{}\begin{matrix}t_1=-1\left(loại\right)\\t_2=2\left(nhận\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x+4}=2\)

\(\Leftrightarrow x^2-3x+4=4\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy nghiệm của pt là \(\left\{0;3\right\}\)

21 tháng 1 2018

5(+x)-4=24

21 tháng 1 2018

8

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

19 tháng 5 2021

đk: \(-x^4+3x-1\ge0\)

Có \(-\left(x^4+1\right)\le-2x^2\)

 \(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\) 

Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)

\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\)  (*)

Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)

Từ (*) (2*) dấu = xảy ra khi x=1 (TM)

Vậy x=1

 

NV
22 tháng 7 2021

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

NV
22 tháng 6 2021

ĐKXĐ: \(x\ge1\)

\(\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+7}-3\right)+\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\dfrac{x-2}{\sqrt{x-1}+1}+\dfrac{x-2}{\sqrt{x+7}+3}+\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt{x-1}+1}+\dfrac{1}{\sqrt{x+7}+3}+x-1\right)=0\)

\(\Leftrightarrow x-2=0\)