Cho tam giác ABC ( AB < AC ) có 3 góc nhọn, các đường cao AD, BE,CF cắt nhau tại H
a/ chứng minh tam giác CFB ~ tam giác ADB
b/ chứng minh AF . AB = AH . AD
c/ Chứng minh tam giác BDF ~ tam giác BAC
d/ gọi M là trung điểm của BC. Chứng minh góc EDF = góc EMF
a: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
góc FBC chung
Do đó: ΔBFC\(\sim\)ΔBDA
b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
Do đó: ΔAFH\(\sim\)ΔADB
Suy ra: AF/AD=AH/AB
hay \(AF\cdot AB=AH\cdot AD\)
c: Ta có: ΔBDA\(\sim\)ΔBFC
nên BD/BF=BA/BC
=>BD/BA=BF/BC
Xét ΔBDF và ΔBAC có
BD/BA=BF/BC
góc DBF chung
Do đó: ΔBDF\(\sim\)ΔBAC