Với x > 1, biểu thức đạt giá trị nhỏ nhất khi x =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ câu trả lời là biểu thức A=|x-1|-2015 đạt giá trị nhỏ nhất khi x=1
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Dấu"=" xảy ra khi và chi khi: (x + 1/2)2 = 0 <=> x = -1/2
để x^2+x+1 đật giá trị nhỏ nhất thì x^2+x+1<0
\(\Rightarrow\)x^2+x<0-1
\(\Rightarrow\)x(x+1)<0 vế pai là phân tích đa thức thah nhân tử
\(\Rightarrow\)x+1<0
\(\Rightarrow\)x< -1
Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x
=>A\(\ge\)2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)
vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016
k mik nha
bài này mik từng làm rồi
-----Chúc hok tốt---------
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(A=5x+\dfrac{180}{x-1}=5\left(x-1\right)+\dfrac{180}{x-1}+5\)
\(\ge2\sqrt{\dfrac{5\left(x-1\right).180}{x-1}}+5=65\)
Đẳng thức xảy ra \(\Leftrightarrow5\left(x-1\right)=\dfrac{180}{x-1}\Leftrightarrow x=7\)