K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)

\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)

b: Ta có: |2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>x=-2

Thay x=-2 vào A, ta được:

\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)

c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)

=>x+3=24x+12

=>24x+12=x+3

=>23x=-9

hay x=-9/23

d: Để A<0 thì x+3<0

hay x<-3

AH
Akai Haruma
Giáo viên
10 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

10 tháng 6 2021

tớ hi vọng cậu thông cảm cho tớ, tớ không sử dụng kí hiệu tốt được

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}-1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-3\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}-3}\)

b: A là số nguyên

=>\(\sqrt{a}-3+2⋮\sqrt{a}-3\)

=>\(\sqrt{a}-3\in\left\{1;-1;2;-2\right\}\)

=>a thuộc {16;25;1}

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}+\dfrac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b: A<1

=>A-1<0

=>\(\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

=>\(\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

=>\(\dfrac{4}{\sqrt{a}-3}< 0\)

=>căn a-3<0

=>0<=a<9 và a<>4

c: A là số nguyên

=>\(\sqrt{a}+1⋮\sqrt{a}-3\)

=>căn a-3+4 chia hết cho căn a-3

=>căn a-3 thuộc {1;-1;2;-2;4;-4}

mà a>=0 và a<>4; a<>9

nên a thuộc {16;25;1;49}

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-2x+3\)

\(=2x+3\)

\(A=15\Rightarrow2x+3=15\)

\(2x=12\)

\(x=6\)

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-\sqrt{\left(2x-3\right)^2}\)

\(=4x-\left|2x-3\right|\)

Theo đề ta có: \(A=-15\Leftrightarrow4x-\left|2x-3\right|=-15\)

\(\Rightarrow\left|2x-3\right|=4x+15\)

\(\Rightarrow\orbr{\begin{cases}2x-3=4x+15\\2x-3=-4x-15\end{cases}\Rightarrow\orbr{\begin{cases}2x=-18\\6x=-12\end{cases}\Rightarrow}\orbr{\begin{cases}x=-9\\x=-2\end{cases}}}\)

                                                           Vậy x = {-2;-9}