Tính :
a ) ( a + b ) - ( - c + a + b )
b ) -(x + y ) + ( -Z + x + y )
c) ( m - n + p ) + ( -m + n + p )
Giúp nhaa
Tối đi học rồi ...
Helpp mee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (a+b)-(-c+a+b)
= a+b+c-a-b
= c
b) -(x+y)+(-z+x+y)
= -x-y-z+x+y
= x
c) ( m-n+p)+(-m+n+p)
= m-n+p-m+n+p
= p+p
= 2p
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{a}{3}\)
b) Áp dụng BĐT Bunyakovsky,ta có:
\(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{a}{3}\)
a) ( a - b + c ) - ( -b - a + c ) - [ - ( -a ) ]
= a - b + c + b + a - c - a
= 0
chắc là z ~~
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
\(\left(a+b\right)-\left(-c+a+b\right)\)
\(=a+b+c-a-b\)
\(=\left(a-a\right)+\left(b-b\right)+c\)
\(=c\)
\(-\left(x+y\right)+\left(-z+x+y\right)\)
\(=-x+-y+-z+x+y\)
\(=\left[\left(-x\right)+x\right]+\left[\left(-y\right)+y\right]+-z\)
\(=-z\)
\(\left(m-n+p\right)+\left(-m+n+p\right)\)
\(=m-n+p-m+n+p\)
\(=\left(m-m\right)+\left(n-n\right)+\left(p+p\right)\)
\(=2p\)
2p là gì