1 Cho M = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\div\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\) với x > 0 , x \(\ne\) 1.
a. Rút gọn M (câu này mình ra là \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x}\) , không biết có đúng không nữa)
b.Tìm x sao cho M > 0
2. Cho biểu thức P= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0, a \(\ne\) 1
a.Rút gọn biểu thức P
b. Tìm a để P \(\ge\) -2
Bài 2:
a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)
b: Để P>=-2 thì P+2>=0
\(\Leftrightarrow-2\sqrt{a}+2>=0\)
=>0<=a<1