K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

\(3x^3-3x^2-3x-5=0\) (1)

Đặt \(t=x-\dfrac{1}{3}\Rightarrow x=\dfrac{1}{3}+t\) , ta được:

\(\left(1\right)\Leftrightarrow3\left(\dfrac{1}{3}+t\right)^3-3\left(\dfrac{1}{3}+t\right)^2-3\left(\dfrac{1}{3}+t\right)-5=0\)\(\Leftrightarrow3t^3-4t-\dfrac{56}{9}=0\) (2)

Đặt \(y=\dfrac{t}{\dfrac{4\sqrt{3}}{3}}\Rightarrow t=\dfrac{4\sqrt{3}}{3}y\)

\(\Rightarrow\left(2\right)\Leftrightarrow3\left(\dfrac{4\sqrt{3}}{3}y\right)^3-4\left(\dfrac{4\sqrt{3}}{3}y\right)^2-\dfrac{56}{9}=0\)\(\Leftrightarrow4y^3-3y^2=\dfrac{7\sqrt{3}}{6}\)

Đặt \(a=\sqrt[3]{\dfrac{7\sqrt{3}}{6}+\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\)\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3-3\alpha=\dfrac{7\sqrt{3}}{6}\)

Vậy \(\alpha=y\) là nghiệm của pt

\(\Rightarrow y=\left(\sqrt[3]{\dfrac{7\sqrt{3}}{6}+\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\right)\left(\sqrt[3]{\dfrac{7\sqrt{3}}{6}-\sqrt{\dfrac{7\sqrt{3}}{6}^2+1}}\right)\)\(=0,5034424461\)

\(\Rightarrow t=\dfrac{4\sqrt{3}}{3}y=1,162650527\)

\(\Rightarrow x=\dfrac{1}{3}+t=1,49598386\)

25 tháng 7 2017

3x3-3x2-3x-5=0

x -3x -5=0

x-3x=5

-2x=5

x=\(\dfrac{-5}{2}\)

8 tháng 1 2017

26 nhé bn mk trả lời trước

8 tháng 1 2017

=0+5+12+6+9+0

=5+12+6+9+0

=17+6+9+0

=23+9+0

=32+0

=32 

tk cho mình nhé

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

11 tháng 5 2022

`a)``P(x)=2x^3-2x+x^2+3x+2`

`=2x^3+x^2+x+2`

`Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1`

`=x^3+x^2+x+1`

`#Khói`

11 tháng 5 2022

a)\(P\left(x\right)=2x^3-2x+x^2+3x+2\)

\(P\left(x\right)=2x^3+x^2+x+2\)

\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)

\(Q\left(x\right)=x^3+x^2+x+1\)

Ta có: \(x^5-x^4+3x^3+3x^2-x+1=0\)

\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

28 tháng 8 2021

anh ơi anh làm kiểu:

Xét x=0⇒1=0

       x≠0: chia 2 vế cho x2 được không

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

7 tháng 9 2017

Đáp án C

27 tháng 1 2017