Cho tứ giác ABCD. Đường thẳng đi qua A và song song với BC cắt BD ở E. Đường thẳng đi qua B và song song với AD cắt AC ở G.
a) Chứng minh rằng EG song song với DC
b) Giả sử AB song song với CD. Chứng minh rằng AB2 = EG.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đường thẳng đi qua A và song song với BC cắt ở E????cắt BD ở E phải k
Xét tg ABC có
EF//AC (gt) (1)
EA=EB (gt)
=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC
\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)
Xét tg BCD chứng minh tương tự ta cũng có GC=GD
Xét tg ADC có
GF//AC (gt) (3)
GC=GD (cmt)
=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC
\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)
Từ (1) và (3) => EF//GH (cùng // với AC)
Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)
=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Gọi O là giao của AC và BD
Ta có
FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)
Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)
\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)
Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau
Tự vẽ hình nhá =))
Gọi O là giao điểm của AC và BD.
Ta có: AE//BC (gt)
\(\Rightarrow\dfrac{OE}{OA}=\dfrac{OB}{OC}\) (ĐL Ta-lét) (1)
Ta có: BG//AD (gt)
\(\Rightarrow\dfrac{OB}{OG}=\dfrac{OD}{OA}\) (ĐL Ta-lét) (2)
Nhân theo vế của (1) và (2), ta có:
\(\dfrac{OE.OB}{OA.OG}=\dfrac{OB.OD}{OC.OA}\)
\(\Rightarrow\dfrac{OE}{OG}=\dfrac{OD}{OC}\)
=> EG//CD