Giải hộ pt hoá học này :
(1)
(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi vủa tấm tôn là:
(\(\dfrac{2}{3}\) + \(\dfrac{1}{4}\)) x 2 = \(\dfrac{11}{6}\) (m)
Đáp số: ...
ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow x=3\)
cách 1:Viết thành hằng đẳng thức
\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)
tới đây dễ rùi nhé
cách 2:\(ĐKXĐ:x\ge-2010\)
đặt \(\sqrt{x+2010}=t\left(t>0\right)\)
\(\Rightarrow x^2+t=t^2-x\)
\(\Rightarrow x^2-t^2+x+t=0\)
\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)
tự làm tiếp
cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)
\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)
\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)
\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)
Đến đây tách căn ra ta đc 2 TH (1) và (2)
\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)
\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp
\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)
\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp nhé
( x+2)(x+5)(x+4)(x+3) = 24
<=> (x2 + 5x + 2x + 10)( x2 + 3x+4x+12 ) = 24
<=> ( x2 +7x+10)(x2+7x+12) = 24
Đặt x2 + 7x = t
Thay t vào phương trình , ta có
( t + 10)(t+12) = 24
<=> t2 + 12t + 10t + 120 - 24 = 0
<=> t2 + 22t + 96 = 0
<=> t2 + 6t + 16t + 96 = 0
<=> t( t+6)+16(t+6) = 0
<=> (t+16)(t+6) = 0
=> t+ 16 = 0 => t= -16
hoặc t+6=0 => t= - 6
rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6
x là tất cả các giá trị tìm được
\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)
(1) \(4p_M+2n_M+2p_X+n_X=116\)
(2) \(2p_X+n_X=2p_M+n_M+14\)
Thế (2) vào (1) => \(4p_M+2n_M+2p_M+n_M=102\)
\(6p_M+3n_M=102\)
\(\Leftrightarrow2p_M+n_M=34\) (I)
Thế (I) vào (2) ta có: \(2p_X+n_X=48\) (II)
(I)(II) \(\Rightarrow\left\{{}\begin{matrix}2p_M+n_M=34\\2p_X+n_X=48\end{matrix}\right.\)
Éc.. hong ra kết quả :(