K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

20 tháng 3 2022

ý 2

 

18 tháng 8 2016

Câu hỏi sai ở phần a nha :))
sửa: a, chứng minh rằng: tam giacs ABH đồng dạng tam giác ABC

26 tháng 7 2018

a.Ta có:góc B +góc A=90 độ, góc B + góc C=90 độ. suy ra góc A= góc C(cùng phụ góc B)

tam giác ABH và tam giac ABC có: BAC=AHB, BAH=ACB(cmt)

suy ra tam giác ABH đồng dạng với tam giac ABC

b.Áp dụng hệ thức h^2=b'.c' vào tam giác ABC ta có AH^2=BH.HC suy ra đpcm

A B C F E H

a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :

\(+,\widehat{A}\)chung

\(+,AB=AC\)\(\Delta ABC\)cân tại A )

\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)

\(\Rightarrow\Delta AEB=\Delta AFC\)

b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)

\(\Rightarrow AF=AE\)

Xét \(\Delta AEH\)và \(\Delta AFH\)có :

\(+,\widehat{AFH}=\widehat{AEH}=90^0\)

\(+,AF=AE\)                        \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)

\(+,AH\)chung

\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)

\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)

Mặt khác \(\Delta ABC\)cân tại A

\(\Rightarrow AH\perp BC\)

c, Tự làm nhé ..

a: AH*BC=BK*AC

=>BC/AC=BK/AH=6/5

=>BH/AC=3/5

=>CH/AC=3/5

=>CH/3=AC/5=k

=>CH=3k; AC=5k

AH^2+HC^2=AC^2

=>16k^2=32^2=1024

=>k^2=64

=>k=8

=>CH=24cm; AC=40cm

=>BC=48cm; AB=40cm

b: Xét ΔCKB vuông tại K và ΔCHA vuông tại H có

góc C chung

=>ΔCKB đồng dạng với ΔCHA

=>CK/CH=CB/CA

=>CK*CA=CH*CB=1/2BC^2

=>2*CK*CA=BC^2

12 tháng 6 2020

nhầm đầu bài chút rồi phải là tia phân giác của góc HAC cắt BC tại M

a) xét tam giác MHA và tam giác MNA có

MHA=MNA(=90 độ)

MA chung

HAM=NAM( AM là phân giác của HAC)\=> tam giác MHA= tam giác MNA(ch-gnh)

=> AH=AN(hai cạnh tương ứng)

b) vì tam giác ABH vuông tại H=> ABH+HAB= 90 độ=> HAB=30 độ (ABH= 60 độ)

vì AM là phân giác của HAC=> HAM=MAC=BAC-BAH/2=90-30/2=30 độ

xét tam giác ABH và tam gáic MAH có

AH chung

AHB=AHM(=90 độ)

BAH=MAH(=30 độ)

=> tam giác ABH= tam gáic MAH(gcg)

=> AM=AB( hai cạnh tương ứng)

c) vì AM=AB=> tam giác ABM cân A mà ABM= 60 độ=> tam giác ABM đều => AM=MB=AB

d) vì tam giác ABC vuông tại A=> B+C=90 độ=> C=30 độ

=> C=MAN=30 độ

=> tam giác AMC cân M=> AM=MC=MB mà MB+MC=BC=> AM=1/2BC

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0