Cho \(x\ne y\) . Chứng minh \(\dfrac{x^3+xy^2-x^2y-y^3}{x-y}\ge y^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Xét \(\dfrac{x^3+xy^2-x^2y-y^3}{x-y}-y^2\ge0\Leftrightarrow\dfrac{x\left(x^2+y^2\right)-y\left(x^2+y^2\right)}{x-y}-y^2\ge0\Leftrightarrow\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x-y}-y^2\ge0\Leftrightarrow x^2+y^2-y^2\ge0\Leftrightarrow x^2\ge0\left(đúng\right)\)
=> đpcm