Viết các biểu thức sau dưới dạng tổng của hai bình phương: -6x + 9x2-8y+4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+2b^2=x^2+b^2+x^2+b^2=x^2+2xb+b^2+x^2-2xb+b^2=\left(x+b\right)^2+\left(x-b\right)^2\)
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
a) 9x2 – 6x + 1
= (3x)2 – 2.3x.1 + 12
= (3x – 1)2 (Áp dụng hằng đẳng thức (2) với A = 3x; B = 1)
b) (2x + 3y)2 + 2.(2x + 3y) + 1
= (2x + 3y)2 + 2.(2x + 3y).1 + 12
= [(2x + 3y) +1]2 (Áp dụng hằng đẳng thức (1) với A = 2x + 3y ; B = 1)
= (2x + 3y + 1)2
c) Đề bài tương tự:
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc hiệu :
4x2 – 12x + 9
(2a + b)2 – 4.(2a + b) + 4.
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
\(A=9x^2-6x+1\)
\(=\left(3x\right)^2-2.3x.1+1^2\)
\(=\left(3x-1\right)^2\)
\(B=\)\(\left(2x+3y\right)^2+\left(2x+3y\right)+1\)
\(=\left[\left(2x+3y\right)^2+2.\left(2x+3y\right).\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)
\(=\left(2x+3y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)