Tìm n thuộc Z sao cho:
a)1/9.3^4.3^n=3^7
b)1/2.2^n+4.2^n=9.2^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK viết lại ,bn xem đề thế này có đg ko nhé
\(a,\dfrac{1}{9}.3^4.3^{n+1}=9^4\)
\(b,\dfrac{1}{2}.2^{n+4}.2^n=9.2^5\)
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)
\(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\\ \Rightarrow2^n\left(\dfrac{1}{2}+4\right)=9\cdot2^5\\ \Rightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\\ \Rightarrow2^{n-1}\cdot9=9\cdot2^5\\ \Rightarrow n-1=5\\ \Rightarrow n=6\)
1.1
x=(3/5)^7:(3/5)^5=(3/5)^7-5=(3/5)62=6/5=1,2
1.2
x=5+7/10+3/10=5+10/10=5+1=6
1.3
x=\(\frac{18}{23}\) :\(\frac{6}{7}\) =\(\frac{18}{23}\) . \(\frac{7}{6}\) = \(\frac{21}{23}\)
a: \(3^n\cdot3^4\cdot\dfrac{1}{9}=3^7\)
\(\Leftrightarrow3^n\cdot3^2=3^7\)
=>n+2=7
hay n=5
b: \(\Leftrightarrow2^n\cdot\left(\dfrac{1}{2}+4\right)=9\cdot2^5\)
\(\Leftrightarrow2^n=9\cdot2^5:\dfrac{9}{2}=9\cdot\dfrac{2}{9}\cdot2^5=2^6\)
hay n=6