x3-0,25.x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-0,25=0\\ \Rightarrow x^3=0,25\\ \Rightarrow x=\sqrt[3]{0,25}\)
a) 1/5 x 19 x 2/3 x 10 x 1/2 x 3 x 1/38
= ( 1/5 x 10 ) x ( 19 x 1/38 ) x ( 2/3 x 1/2 ) x 3
= ( 2 x 1/2 ) x ( 1/3 x 3 )
= 1 x 1
= 1
b) 5/8 x 4 x 8/5 x 7 x 0,25 x 1/8
= ( 5/8 x 8/5 ) x (4 x 0,25 ) x ( 7 x 1/8 )
= 1 x 1 x 7/8
= 7/8
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)
\(TH_2:x< 0\)
Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)
Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)
Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)
Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)
Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương
Vậy \(x\in\left\{-2;-3\right\}\)
??? ...
??????????????????????????????????????????????????...............................................
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
c: \(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\\x=-5\end{matrix}\right.\)
\(x^3-0,25x=0\)
\(\Rightarrow x\left(x^2-0,25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-0,25=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=0,25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm0,5\end{matrix}\right.\)
Chúc bạn học tốt!!!