Chứng minh rằng A) 7 mũ 6+7mũ 5-7mũ4 chia hết cho 55
B) 16mũ5+2mũ15 :33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25=32 đồng dư với -1(mod 33)
=>(25)3=215 đồng dư với -1(mod 33)
165 đồng dư với 1(mod 33)
=>165+215 đồng dư với 0(mod 33)
=>165+215 chia hết cho 33
=>đpcm
165+215 = 220+215=215.(25+1) =215 .33
Vì 33 chia hết cho 33 nên 215 .33 chia hết cho 33
Vậy 165+215 chia hết cho 33
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
B,
ta thấy:
16^5=2^20
=> A=16^5 + 2^15
= 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
\(A=\)\(7^6\)\(+\)\(7^5\)\(-\)\(7^4\)
\(A=\)\(7^4\left(7^2+7-1\right)\)
\(A=\)\(7^4\left(49+7-1\right)\)
\(A=\)\(7^4.55\)chia hết cho 55
\(B=\)\(16^5\)\(+\)\(2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)chia hết cho 33
1] chứng minh rằng ab - ab chia hết cho 9
Ta có:ab-ab=0\(⋮\)9
2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia hết cho 55
Ta có:78+77-76=76.(72+7-1)=76.55\(⋮\)5
\(\overline{ab}-\overline{ba}\)
\(=\left(10a+b\right)-\left(10b+a\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm
\(A=7^6+7^5-7^4\)
\(A=7^4.7^2+7^4.7-7^4.1\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4.55\)
\(A⋮55\rightarrowđpcm\)
\(B=16^5+2^{15}\)
\(B=\left(2^4\right)^5+2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}.2^5+2^{15}.1\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)
\(B⋮33\rightarrowđpcm\)