K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm

17 tháng 7 2017

\(A=7^6+7^5-7^4\)

\(A=7^4.7^2+7^4.7-7^4.1\)

\(A=7^4\left(7^2+7-1\right)\)

\(A=7^4.55\)

\(A⋮55\rightarrowđpcm\)

\(B=16^5+2^{15}\)

\(B=\left(2^4\right)^5+2^{15}\)

\(B=2^{20}+2^{15}\)

\(B=2^{15}.2^5+2^{15}.1\)

\(B=2^{15}\left(2^5+1\right)\)

\(B=2^{15}.33\)

\(B⋮33\rightarrowđpcm\)

25=32 đồng dư với -1(mod 33)

=>(25)3=215 đồng dư với -1(mod 33)

165 đồng dư với 1(mod 33)

=>165+215 đồng dư với 0(mod 33)

=>165+215 chia hết cho 33

=>đpcm

7 tháng 10 2015

165+215 = 220+215=215.(25+1) =215 .33

Vì 33 chia hết cho 33 nên 215 .33  chia hết cho 33

Vậy 165+215  chia hết cho 33

15 tháng 8 2017

a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.

Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)

\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)

b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)

\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)

\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)

15 tháng 8 2017

câu a sai đề, bạn thử bấm máy xem chia hết ko

câu b

16^5 chia 33 dư 1

2^15 chia 33 dư 32

vậy 16^5 + 2^15 chia hết cho 33

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B

13 tháng 7 2015

a,=7^4(7^2+7-1)

=7^4.55 vậy nó chia hết cho 55

b,16^5=2^20

2^15(2^5+1)

2^15.33 chia hết cho 33

các câu c,d cũng tương tự

19 tháng 7 2016

deu chia het ca

6 tháng 7 2015

B,

ta thấy:

16^5=2^20  

=> A=16^5 + 2^15

 = 2^20 + 2^15

 = 2^15.2^5 + 2^15

 = 2^15(2^5+1)  

=2^15.33  

số này luôn chia hết cho 33

20 tháng 10 2018

b) \(16^5+2^{15}⋮33\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}.\left(1+2^5\right)\)

\(=2^{15}.33⋮33\)

16 tháng 9 2017

\(A=\)\(7^6\)\(+\)\(7^5\)\(-\)\(7^4\)

\(A=\)\(7^4\left(7^2+7-1\right)\)

\(A=\)\(7^4\left(49+7-1\right)\)

\(A=\)\(7^4.55\)chia hết cho 55

16 tháng 9 2017

\(B=\)\(16^5\)\(+\)\(2^{15}\)

\(B=2^{20}+2^{15}\)

\(B=2^{15}\left(2^5+1\right)\)

\(B=2^{15}.33\)chia hết cho 33

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

31 tháng 7 2019

1] chứng minh rằng ab - ab chia hết cho 9

Ta có:ab-ab=0\(⋮\)9

2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia  hết cho 55

Ta có:78+77-76=76.(72+7-1)=76.55\(⋮\)5

31 tháng 7 2019

\(\overline{ab}-\overline{ba}\)

\(=\left(10a+b\right)-\left(10b+a\right)\)

\(=9a-9b\)

\(=9\left(a-b\right)⋮9\)