K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Áp dụng bất đẳng thức AM-GM ta có:

\(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(\Rightarrow ab+\dfrac{1}{ab}\ge2.\sqrt{1}=2.1=2\)

Dâu "=" sảy ra khi và chỉ khi \(a=b=1\)

Vậy GTNN của biểu thức là 2 đạt được khi và chỉ khi \(a=b=1\)

Chúc bạn học tốt!!!

15 tháng 7 2017

Áp dụng bđt AM-GM ta có:

\(1\ge a+b\ge2\sqrt{ab}\) \(\Leftrightarrow1\ge4ab\)\(\Leftrightarrow\dfrac{1}{4}\ge ab\)

\(S=ab+\dfrac{1}{ab}=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16ab}\) \(\Leftrightarrow S\ge2.\dfrac{1}{4}+\dfrac{15}{16ab}=\dfrac{1}{2}+\dfrac{15}{16ab}\ge\dfrac{1}{2}+\dfrac{15}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{2}\)

30 tháng 6 2019

Áp dụng BĐT Cô - Si cho hai số dương \(ab\)và \(\frac{1}{ab}\), ta có : 

\(ab+\frac{1}{ab}\ge2\sqrt{ab.\frac{1}{ab}}=2\sqrt{1}=2\)

\(\Rightarrow ab+\frac{1}{ab}\ge2\)

30 tháng 6 2019

\(0< a;b< 1\) thì không tìm được GTNN

14 tháng 2 2016

\(S=ab+\frac{1}{ab}=16ab+\frac{1}{ab}-15ab\ge8-15ab\) (1)

\(\sqrt{ab}\le\frac{a+b}{2}\le\frac{1}{2}\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow-15ab\ge-\frac{15}{4}\Leftrightarrow8-15ab\ge8-\frac{15}{4}=\frac{17}{4}\)

VẬy GTNN của S 17/4 tại a = b = 1/2 

1 tháng 8 2021

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

1 tháng 8 2021

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

 

9 tháng 6 2018

Làm lại :v

\(\dfrac{a}{1+b}+\dfrac{b}{1+a}+\dfrac{1}{a+b}\)

\(\ge\dfrac{a}{a+2b}+\dfrac{b}{2a+b}+\dfrac{1}{a+b}\)

\(=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{2ab+b^2}+\dfrac{1}{a+b}\)

\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+2ab}+\dfrac{1}{a+b}\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+\dfrac{\left(a+b\right)^2}{2}}+\dfrac{1}{a+b}\)

\(=\dfrac{\left(a+b\right)^2}{\dfrac{3}{2}\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{3}+\dfrac{1}{a+b}\ge\dfrac{2}{3}+1=\dfrac{5}{3}\)

\("="\Leftrightarrow a=b=\dfrac{1}{2}\)

9 tháng 6 2018

Thật ra bài này t đã làm rồi,mà méo rảnh đi mò link,bạn rảnh thì có thể tìm nhé

16 tháng 7 2018

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2