tìm x thuộc Z:
\(\left(2x-3\right)^{2015}=\left(2x-3\right)^{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
a) \(|4-2x|+|x-2|=3-x\) ( 1 )
+) Với : x ≥ 2 , ta có :
( 1 ) \(\Leftrightarrow2x-4+x-2=3-x\)
\(\Leftrightarrow4x=9\)
\(\Leftrightarrow x=\dfrac{9}{4}\left(TM\right)\)
+) Với : x < 2 , ta có :
( 1 ) \(\Leftrightarrow4-2x+2-x=3-x\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
KL........
b) Vô nghiệm
đặt x-2013=a
x-2015=b
4048-2x=c
theo đề :a3+b3=-c3
=>a3+b3+c3=0 (1)
mà ta thấy : a+b+c=0
=>a3+b3+c3=3abc (2)
từ (1) và (2) => 3abc=0
nên \(\left[{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2013=0\\x-2015=0\\2x-4028=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2013\\x=2015\\x=2014\end{matrix}\right.\)
a: x/3=z/8
nên x/9=z/24
-6y=7z
nên \(\dfrac{y}{-7}=\dfrac{z}{6}\)
=>y/-28=z/24
=>x/9=y/-28=z/24
Áp dụng tính chất của dãytỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{-28}=\dfrac{z}{24}=\dfrac{2x-9y}{2\cdot9-9\cdot\left(-28\right)}=\dfrac{2}{270}=\dfrac{1}{135}\)
Do đó: x=1/15; y=-28/135; z=8/45
c: \(\Leftrightarrow\left(5x-3\right)^{2013}\cdot\left[\left(5x-3\right)^2-1\right]=0\)
=>(5x-3)(5x-4)(5x-2)=0
hay \(x\in\left\{\dfrac{3}{5};\dfrac{4}{5};\dfrac{2}{5}\right\}\)
x=\(\sqrt{\frac{2-\sqrt{3}}{2}}\) =\(\sqrt{\frac{4-2\sqrt{3}}{4}}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow2x=\sqrt{3}-1\Rightarrow2x+1=\sqrt{3}\Rightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x+1=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)
nên đề bài = \(\left(x^3\left(2x^2+2x-1\right)+1\right)^{2013}+\frac{\left(x\left(2x^2+2x-1\right)-3\right)^{2013}}{x^2\left(2x^2+2x-1\right)-3^{2013}}\)
=\(\left(0+1\right)^{2013}+\frac{\left(0-3\right)^{2013}}{0-3^{2013}}=1+1=2\)
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
\(\left(2x-3\right)^{2015}=\left(2x-3\right)^{2013}\)
\(\Rightarrow\left(2x-3\right)^{2015}-\left(2x-3\right)^{2013}=0\)
\(\Rightarrow\left(2x-3\right)^{2013}\left[\left(2x-3\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-3\right)^{2013}=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\)
+) \(\left(2x-3\right)^{2013}=0\Rightarrow x=\dfrac{3}{2}\)
+) \(\left(2x-3\right)^2-1=0\Rightarrow\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\) hoặc x = 2 hoặc x = 1
x=2 nha bạn