Tim x biet: 1/(4.7)+1/(7.10)+...+1/(97.100)=1/3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)
\(\frac{99}{100}=\frac{0,99x}{2009}\)
=>0,99x*100=2009*99
99x=2009*99
=>x=2009
Vậy x=2009
\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)
\(\Rightarrow100.0.33.x=99.2009\)
\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )
⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009
⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Còn lại thì dễ rồi bạn nhé
\(=>\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)
Rút gọn các số đi ta được :
\(=>\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)
\(=>\dfrac{1}{4}-\dfrac{1}{100}=x\)
\(=>x=\dfrac{6}{25}\)
CHÚC BẠN HỌC TỐT.....
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+.....+\dfrac{1}{97.100}=\dfrac{1}{3}x\)
\(\Rightarrow\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{1}{3}x\)
\(\Rightarrow\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{97}-\dfrac{1}{100}=x\)
\(\Rightarrow\dfrac{1}{4}-\dfrac{1}{100}=x\)
\(\Rightarrow x=\dfrac{6}{25}\)