Tìm x,y biết:
a) x2+y4=0
b) (x-1)2+ (y+2)2=0
c) (x-11+y)2 + (x-4-y)2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
a. Vì \(\left|x+3\right|\ge0;\left|y-2\right|\ge0\)
Mà | x + 3 | + | y - 2 | = 0
=> x + 3 = y - 2 = 0
=> x = -3; y = 2
b. |-x + 5| = |1 - 5|
=> |5 - x| = |-4|
=> 5 - x = -4 hoặc 5 - x = -(-4)
=> x = 5 - (-4) hoặc 5 - x = 4
=> x = 5 + 4 hoặc x = 5 - 4
=> x = 9 hoặc x = 1
c. -11 - |x| = -17
=> |x| = -11 - (-17)
=> |x| = -11 + 17
=> |x| = 6
=> x = 6 hoặc x = -6
d. |x - 2| + |2y + 4| = 0
=> x - 2 = 2y + 4 = 0
=> x = 2; y = -2
e. (x - 1) . (y + 2) = 1
=> (x - 1) . (y + 2) = 1 . 1 = (-1) . (-1)
+) x - 1 = y + 2 = 1
=> x = 2; y = -1
+) x - 1 = y + 2 = -1
=> x = 0; y = -3
a) x = -3 ; y = 2
b) x = 1
c) x = 6 ; -6
d) x = 2 ; y = -2
e) x = 2 ; y = -1
\(x^2+y^4=0\)
\(x^2\ge0;y^4\ge0\)
Dấu "=" xảy ra khi:
\(x^2=0\Rightarrow x=0\)
\(y^4=0\Rightarrow y=0\)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
Dấu"=" xảy ra khi:
\(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\)
\(\left(x-11+y\right)^2\ge0;\left(x-4-y\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left(x-11+y\right)^2=0\Rightarrow x-11+y=0\)
\(\left(x-4-y\right)^2=0\Rightarrow x-4-y=0\)
\(\Rightarrow\left(x-11+y\right)-\left(x-4-y\right)=0\)
\(\Rightarrow x-11+y-x+4+y=0\)
\(\Rightarrow2y-7=0\Rightarrow2y=7\Rightarrow y=\dfrac{7}{2}\)
Thay \(\dfrac{7}{2}\)vào \(2y\) ta có:
\(x-11+y=0\Rightarrow x-11+\dfrac{7}{2}=0\Rightarrow x-\dfrac{15}{2}=0\Rightarrow x=\dfrac{15}{2}\)