Xếp 6 học sinh nam và 4 học sinh nữ ngồi vào 1 bàn tròn có 10 ghế. Hỏi có bao nhiêu cách xếp sao cho không có hai học sinh nữ ngồi liền nhau. ĐS: 52840
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
+ Số cách xếp 8 học sinh nói trên ngồi xung quanh một bạn tròn là 7 !.
+ Đếm số cách xếp 8 học sinh ngồi xung quanh một bàn tròn mà hai học sinh Hải và Liên ngồi cạnh nhau:
Trước tiên, số cách xếp 7 học sinh (trừ bạn Hải sẽ xếp sau) ngồi xung quanh một bàn tròn là 6 !
Khi đó có 2 cách xếp chỗ ngồi cho bạn Hải (ở bên trái hoặc bên phải bạn Liên).
Theo quy tắc nhân, sẽ có 6!.2 cách xếp 8 bạn ngồi xung quanh một bàn tròn mà hai bạn Hải và Liên ngồi cạnh nhau.
Vậy số cách xếp chỗ ngồi sao cho Hải và Liên không ngồi cạnh nhau là: 7! – 6!.2 =6!.5.
Chọn C.
Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x
=> Có 4! cách xếp x
số cách xếp 5 học sinh nam và x là :
6!.4! = 17280 (cách)
Chọn D
Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có cách.
Đánh số ghế lần lượt từ 1 đến 10.
Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:
Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.
Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.
Vậy có tất cả 2. ( 5 ! ) 2 cách.
Xác suất cần tìm bằng
Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.
Ta chia hai dãy ghế thành 5 cặp ghế đối diện:
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có cách;
+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.
Vậy có tất cả cách xếp thỏa mãn.
Xác suất cần tìm bằng
Xếp ngẫu nhiên 10 học sinh có 10! cách. Ta tìm số cách xếp thoả mãn
Đánh số ghế lần lượt từ 1 đến 10.
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Nam xếp ghế lẻ, nữ xếp ghế chẵn có 5!5! cách
Nam xếp ghế chẵn, nữ xếp ghế lẻ có 5!5! cách
Vậy có tất cả 5!5!+5!5!cách xếp. Xác suất cần tính bằng 5 ! 5 ! + 5 ! 5 ! 10 ! = 1 126
Chọn đáp án D.
Cách 2: Chia thành 5 cặp ghế đối diện:
Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có C 5 1 C 5 1 2 ! cách
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 4 1 C 4 1 cách;
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 3 1 C 3 1 cách;
Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có C 2 1 C 2 1 cách;
Cặp nam và nữ còn lại xếp vào cặp ghế 5 có 1 cách.
Vậy có tất cả ( C 5 1 C 4 1 C 3 1 C 2 1 ) 2 2 ! = 2 5 ! 2 cách xếp thoả mãn.
Xác suất cần tính bằng 2 5 ! 2 10 ! = 1 216
Chọn đáp án D.
Hồng Phúc CTV, Nguyễn Việt Lâm