K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=3+3^2+3^3+...+3^{20}\)

\(\Leftrightarrow3\cdot A=3^2+3^3+3^4+...+3^{21}\)

\(\Leftrightarrow2\cdot A=3^{21}-3\)

hay \(A=\dfrac{3^{21}-3}{2}\)

29 tháng 12 2022

bạn hình như viết sai đề

 

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy

$3^2\vdots 9$

$3^3=3^2.3\vdots 9$

......

$3^{20}=3^2.3^{18}\vdots 9$

$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$

$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9

$\Rightarrow A$ không thể là số chính phương.

 

30 tháng 12 2022

\(3B=5+\left(\dfrac{5}{3}\right)+\left(\dfrac{5}{3}\right)^2+...+\left(\dfrac{5}{3}\right)^{20}\)

=>\(2B=5-\left(\dfrac{5}{3}\right)^{21}=\dfrac{5\cdot3^{21}-5}{3^{21}}\)

=>\(B=\dfrac{5\cdot3^{21}-5}{3^{21}\cdot2}\)

30 tháng 12 2022

=> 
B
=
5

3
21

5
3
21

2

 

21 tháng 12 2022

2400

 

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

7 tháng 1 2024

\(320-\left[32-2.\left(5-2\right)^2\right]\)

\(=320-\left[32-2.3^2\right]\)

\(=320-\left[32-2.9\right]\)

\(=320-\left[32-18\right]\)

\(=320-14\)

\(=306\)

\(\Rightarrow B.306\)