K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(A=1+2+2^2+...+2^{2004}\)

\(A=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+...+2^{2000}\left(1+2+2^2+2^3+3^4\right)\)\(A=31.\left(1+2^5+...+2^{2000}\right)\)

Vậy ..............

14 tháng 5 2018

\(A=2^0+2^1+2^2+...+2^{2004}\)

\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{2000}+2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\cdot\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{2000}\cdot\left(2^0+2^1+2^2+2^3+2^4\right)\)

\(A=31+2^5\cdot31+...+2^{2000}\cdot31\)

\(A=31\cdot\left(1+2^5+...+2^{2000}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

28 tháng 4 2015

=> A = (20+21+22+23+24)+(25+26+27+28+29)+...+(22000+22001+22002+22003+22004)

    A = (20+21+22+23+24)+25.(20+21+22+23+24)+...+22000.(20+21+22+23+24)

    A=            31             + 25 . 31                    + ...+ 22000.31

    A= 31. (1+25+....+22000) chia hết cho 31

28 tháng 4 2015

>>>Việt à bạn nhầm to rồi. Cái bài này bọn tớ làm đầy. Cả lớp tớ ai cũng coi như muỗi hết đó

11 tháng 2 2018

Từng bài 1 thôi nhs!

a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005

3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004 

4A = 32005 + 1

=> 4A - 1 = 32005 là lũy thừa của 3

=> ĐPCM

14 tháng 6 2024

đề có thiếu ko đó

A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004 

đặt B  =  23 + 24 + 25 + ...+ 22003 + 22004  

2B=  24 + 25 + 26 + ....+ 22004 + 22005 

2B-B= (  24 + 25 + 26 + ....+ 22004 + 22005  ) -  (   23 + 24 + 25 + ...+ 22003 + 22004 )

B  =   24 + 25 + 26 + ....+ 22004 + 22005     - 23 - 24 -  25 -  ...-  22003 -  22004

B  = 22005  - 23  

B =  22005  - 8 

=> A = 4 + B = 4 +  22005  - 8 = 22005 - 4 =     .....

30 tháng 4 2016

A=(1+2+22+23+24)+....+(22000+22001+22002+22003+22004)

A= 1x(1+2+22+23+24) + ...+22000x(1+2+22+23+24)

A=1x31+...+22000x 31

A=31x(1+...+22000)  chia hết cho 31 ( đpcm )

12 tháng 7 2019

b , Số số hạng của S là : ( 100 - 1 ) : 1 + 1 = 100 ssh 

Ta chia S thành 20 nhóm , mỗi nhóm 2 số hạng 

=> S = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 ) 

=> S = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 2 96 . ( 1 + 2 + 22 + 23 + 24 ) 

=> S = 2 . 31 + ... + 296 . 31 

=> S = 31 . ( 2 + .. + 296 ) chia hết cho 31

Vậy S chia hết cho 31 ( đpcm )

9 tháng 7 2017

b)\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+....+2^{96}.31\)

\(=31.\left(2+....+2^{96}\right)⋮31\)

Vậy...

9 tháng 7 2017

a) \(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{2003}+5^{2004}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{2003}.6\)

\(=6.\left(5+5^3+...+5^{2003}\right)⋮6\)

Vậy....

\(5+5^2+5^3+...+5^{2004}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6+\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{2002}.31\)

\(=31.\left(5+5^4+...+5^{2002}\right)⋮31\)

Vậy...

Trường hợp 3 làm tương tự để chứng minh

18 tháng 6 2015

Xin lỗi: Câu 2 phần b thiếu trường hợp n+1=-1 hoặc n+1=-3 nên n=-2 hoặc n=-4