trong bai :
cho a= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< 1\)
co phan huong dan : \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
cho minh hoi buoc : \(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\) tu dau ra .( giai thich chi tiet)
\(\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)