K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

a, ( a + 3 ) . ( 7 - a ) > 0

TH1 => a + 3 > 0 và 7 - a > 0

= > a > -3 và a < 7

= > -3 < a < 7

TH2 = > a + 3 < 0 và 7 - a < 0

= > a < -3 và a > 7

= > 7 < a < -3 ( vô lí )

Vậy -3 < a < 7

Câu b , c làm tương tự câu a

d, ( 3a - 7 ) . ( 5a + 8 ) < 0

Do 3a - 7 < 5a + 8

= > 3a -7 < 0 và 5a + 8 > 0

= > a < \(\dfrac{7}{3}\) và a > \(\dfrac{-8}{5}\)

Vậy \(\dfrac{-8}{5}< a< \dfrac{7}{3}\)

a: (a+3)(7-a)>0

=>(a+3)(a-7)<0

=>-3<a<7

mà a là số nguyên

nên \(a\in\left\{-2;-1;0;1;...;6\right\}\)

b: (2a+4)(3-a)>0

=>(a-3)(a+2)<0

=>-2<a<3

mà a là số nguyên

nên \(a\in\left\{-1;0;1;2\right\}\)

c: (2a+1)(5-2a)>0

=>(2a+1)(2a-5)<0

=>-1/2<a<5/2

mà a là số nguyên

nên \(a\in\left\{0;1;2\right\}\)

d: (3a-7)(5a+8)<0

=>5a+8>0 và 3a-7<0

=>-8/5<a<7/3

mà a là số nguyên

nên \(a\in\left\{-1;0;1;2\right\}\)

26 tháng 3 2020

Tớ làm cho bạn mà bạn toàn ko tick

26 tháng 3 2020

a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)

Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)

Mà a(a+1)\(⋮\)2 (2)

Từ (1)(2) suy ra a(a+1)(a+2)⋮6

=>a2(a+1)+2a(a+1)⋮6

b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a

Vì -5 chia hết 5

=>-5a chia hết 5

c)x2+2x+2=x2+2x+1+1=(x+1)2+1

Vì (x+1)2≥0

<=>(x+1)2+1>0

d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)

e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1

Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)

rồi nhébanhbanhquahahaleuleu

a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)

\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)

Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)

Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)

mà 2 và 3 là hai số nguyên tố cùng nhau(3)

nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)

hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)

b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\forall a\in Z\)

hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)

c) Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)

hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)

d) Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)

hay \(x^2-x+1>0\forall x\in Z\)(đpcm)

e) Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)

hay \(-x^2+4x-5< 0\forall x\in Z\)

5 tháng 4 2018

Trả lời đi mn