K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 9 2021

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

3 tháng 8 2018

Đáp án là C

Áp dụng hệ thức lượng trong tam giác vuông:

A B 2  = BH.BC = 4.(4 + 16) = 80 ⇒ AB = 4 5 cm

27 tháng 12 2020

- Áp dụng hệ thức (1), ta có:

\(AB^2=BH\cdot BC=16\cdot36=576cm\)

\(\rightarrow AB=\sqrt{576}cm\)

Vậy \(AB=\sqrt{576}cm\)

23 tháng 3 2018

B A C H M

Mấy bài này cũng easy thôi

a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)

Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))

\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)

hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)

\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)

\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)

\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )

b) \(\Delta HMA\)vuông tại H

\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔACB vuông tại A có AH vuông góc BC

nên HA^2=HB*HC

c: \(CB=\sqrt{16^2+12^2}=20\left(cm\right)\)

BH=16^2/20=256/20=12,8cm

10 tháng 5 2023

Sai r

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc CB

nên HA^2=HB*HC

c: \(BC=\sqrt{16^2+12^2}=20\left(cm\right)\)

HB=16^2/20=256/20=12,8cm

17 tháng 10 2021

Ta có \(BH+HC=BC=20\left(cm\right)\)

Áp dụng HTL: \(AB^2=BH\cdot BC=80\Rightarrow AB=4\sqrt{5}\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 12^2+16^2=20cm

AH=12*16/20=9,6cm

BH=AB^2/BC=7,2cm

c: AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7\(\simeq8,6\left(cm\right)\) và CD=80/7\(\simeq11,4\left(cm\right)\)