Chứng minh 2002n x 2005n+1 chia hết cho 2,5 và 10
giúp mình với ai nhanh mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = a + 2b; B = 10a + b
=> 2B = 2 ( 10a + b ) = 20a + 2b
Xét 2B - A = 20a + 2b - a - 2b = 19a ⋮ 19
=> 2B - A ⋮ 19
Mặt khác A ⋮ 19
=> 2B ⋮ 19
=> B ⋮ 19 ( đpcm )
Ta có:
1000 chia hết cho 8 => 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8
và 8 chia hết cho 8
=>10^28+8 chia hết cho 8 (1)
Lại có 10^28+8= 1000....08(27 CS 0)
=>10^28+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=>10^28+8 chia hết cho 72
k mk nha
*Chứng minh rằng (10^28+8) chia hết cho 4:
Ta có:10^28=10^2.10^26 mà 10^2 chia hết cho 4 nên 10^2.10^26 chia hết cho 4.(1)
8 chia hết cho 4.(2)
Từ (1) và (2) ta thấy(10^28+8) chia hết cho 4.(3)
*Chứng minh rằng (10^28+8) chia hết cho 9:
Ta có : 10^28=100..00(29 chữ số,28 chữ số 0)
10^28+8=1000..008(29 chữ số , 27 chữ số 0)
Tổng các chữ số của tổng đó là:
1+0.27+8=9 chia hết cho 9(4)
Vậy từ (3) và (4) ta có (10^28+8) chia hết cho 36.
Cho 16a + 17 b chia hết cho 11
Mà ( 16a + 17b ) + ( 17a +16b ) = 33a + 33b = 11(3a + 3b ) chia hết cho 11
=> 17a + 16 b chia hết cho 11
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
\(x+2⋮x^2\Rightarrow x+2⋮x.x\Rightarrow2⋮x\left(x+1\right)\Rightarrow x\in\left\{\mp1\right\}\)
shitbo thiếu trường hợp rồi nha bạn!
Để x + 2 chia hết cho x2 thì x + 2 chia hết cho x. Hay \(\frac{x+2}{x}\) nguyên.
Ta có: \(\frac{x+2}{x}=1+\frac{2}{x}\). Để \(\frac{x+2}{x}\) nguyên thì \(\frac{2}{x}\) nguyên hay \(x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vậy \(x=\left\{\pm1;\pm2\right\}\)
ta thấy 1978 ko chia hết cho 11
78 ko chia hết cho 11 suy ra a chia hết cho 11
2012 ko chia het cho 11
10 ko chia het cho 11
suy ra chắc chắn b chia hết cho 11 ( ĐPCM)
k nha
\(1978a+2012b-78a-10b=1900a+2002\)
ma 2002b chia het cho 11
=>1900a chia het cho 11 nhung 1900 khong chia het cho 11
=>a chia het cho 11 (1)
ta co 78a+10b chia het cho 11 ma 78a chia het cho 11
=>10b chia het cho 11 ma 10 khong chia het cho 11
=>b chia het cho 11 (2)
tu (1) va (2) =>a+b chia het cho 11
vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12
\(2002^n\times2005^{n+1}=2002^n\times2005^n\times2005=\left(2002\times2005\right)^n\times2005\)
\(2002\times2005\) có chữ số tận cùng là 0
\(\Rightarrow\left(2002\times2005\right)^n\) có chữ số tận cùng là 0
\(\Rightarrow\left(2002\times2005\right)^n\times2005\) có chữ số tận cùng là 0 nên chia hết cho 2; 5 và 10.