Chứng minh rằng 1 tự nhiên gồm toàn chữ số 2 thì chia hết cho 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ chắc chẳng có số nào toàn chữ số 2 chia hết cho 54 đâu
+) Chọn dãy số gồm 2014 số
1,11,111,....,111..11
(2014 cs1)
+) Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia cho2013
Giả sử số đó là 111...11-111...11 (m>n)
(m cs1) (n cs 1)
=>111..1 - 11...1 chia hết cho 2013
=111...100..0 chia hết cho 2013
(m-n cs 1)(n cs0)
=111..1.10n
(m-n cs 1)
Mà 10n ko chia hết cho 2013
=>111..1 chia hết cho 2013 => ĐPCM (điều phải cm)
(m-n cs 1)
cho mình xin k nha
Số gồm 27 chữ số 1 = 9 x 123456791234567912345679
Ta có : 9 chia hết cho 9 và 123456791234567912345679 chia hết cho 3 nên số gồm 27 chữ số 1 chia hết cho 27
1) gọi số đó là ab
theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b
Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11
Vậy ab+ba chia hết cho 11
2) - a.b.c+ 2=333
a.b.c =333-2=331
- a.b.c+b=335
b=335-331=2
- a.b.c+c=341
c= 341-331 =10
=> Ta có: a.b.c=331
mà b=4; c=10
=>4.10.c=331
=>40.c=331
mà 331 lại là số nguyên tố
=> ko tồn tại các số tự nhiên a, b ,c nào
3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)
hay = 201cd
mà 201 chia hết cho 67
Do đó nếu ab=2cd thì abcd chia hết cho 67
Theo đề bài ta có số tự nhiên đó có dạng 4444...4444 ( n số 4 )
Mặt khác ta có dấu hiệu chia hết cho 8 là 3 chữ số cuối chia hết cho 8 thì chia hết cho 8
và 444 ko chia hết cho 8
=> 4444...4444 ( n số 4 ) ko chia hết cho 8 ( đpcm )
đề phải rõ như thế này: C/m rằng tồn tại một số tự nhiên gồm toàn chữ số 2 chia hết cho 54. Không người ta lại tưởng số nào có toàn 2 cx chia hết cho 54.
a chứng minh ik! e coi nứa