Rút gọn biểu thức:
1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)
2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)
9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)
10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)
11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)
12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)
16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)
17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+2\sqrt{12}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+4\sqrt{3}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(8+4\sqrt{3}\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}\)
\(=\sqrt{\left(4-3\right)\cdot4}\)
\(=\sqrt{1\cdot4}\)
\(=\sqrt{4}\)
\(=2\)
b) \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(5\sqrt{2}-7\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-5\sqrt{2}+7\)
\(=0+14\)
\(=14\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
dài quá ==' cả d, e, f nữa ==' có j rảnh lm cho nhé :D