với x>0 tìm min
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
Bài 1:
Ta có: \(M=4x^2-3x+\dfrac{1}{4x}+2011=4x^2-4x+1+x+\dfrac{1}{4x}+2010\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)
\(=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\dfrac{1}{4x}\ge2\sqrt{x.\dfrac{1}{4x}}=2\sqrt{\dfrac{1}{4}}=1\)
Suy ra: \(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)
Vậy: \(Min_M=2011\Leftrightarrow x=\dfrac{1}{2}\)
Bài 2: Tham khảo: với hai số thực không âm a, b thỏa a2 + b2 = 4, tìm giá trị lớn nhất của biểu thức M= ab /(a+b+2) | Câu hỏi ôn tập thi vào lớp 10
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
$3x^2+\frac{3}{4}\geq 3x$
$x^2+\frac{1}{8x}+\frac{1}{8x}\geq 3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}=\frac{3}{4}$
Cộng theo vế:
$\Rightarrow 4x^2+\frac{1}{4x}+\frac{3}{4}\geq 3x+\frac{3}{4}$
$\Rightarrow 4x^2+\frac{1}{4x}\geq 3x$
$\Rightarrow M=4x^2+\frac{1}{4x}-3x+2011\geq 2011$
Vậy $M_{\min}=2011$ khi $x=\frac{1}{2}$
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(4x^2+1\geq 4x\)
\(\Rightarrow M= 4x^2-3x+\frac{1}{4x}+2011\geq x+\frac{1}{4x}+2010\)
Tiếp tục áp dụng BĐT AM-GM: \(x+\frac{1}{4x}\geq 1\)
\(\Rightarrow M\geq x+\frac{1}{4x}+2010\geq 2011\)
Vậy $M_{\min}=2011$. Giá trị này đạt tại $x=\frac{1}{2}$
\(B=\dfrac{16x^2+4x+1}{2x}=\dfrac{2x\left(8x+2\right)+1}{2x}=8x+2+\dfrac{1}{2x}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(8x+\dfrac{1}{2x}\) ≥ \(2\sqrt{8x.\dfrac{1}{2x}}=2\sqrt{4}=4\)
⇔ \(8x+\dfrac{1}{2x}\) + 2 ≥ 4 + 2 = 6
⇒ \(B_{Min}=6\) ⇔\(8x=\dfrac{1}{2x}\) ⇔ \(x=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy ta có:
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)
= \(\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)
\(\ge0+2\sqrt{x.\dfrac{1}{4x}}+2010\) = \(1+2010=2011\)
=> Dấu = xảy ra <=> \(2x=1\) => \(x=\dfrac{1}{2}\)
Vậy ........................................
thiếu đk = \(x\ne0\)