K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Giải:

Ta có:

\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{5}+\dfrac{x}{2017}\)

\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{5}-\dfrac{x}{2017}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)=0\)

\(\dfrac{1}{2}>\dfrac{1}{3};\dfrac{1}{4}>\dfrac{1}{5};\dfrac{1}{2016}>\dfrac{1}{2017}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)\) \(\ne0\)

\(\Leftrightarrow x=0\)

23 tháng 6 2017

\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{4}+\dfrac{x}{2017}\)

\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{4}-\dfrac{x}{2017}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow x=0\)

Vậy x = 0

5 tháng 3 2023

\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)

\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)

 

13 tháng 8 2023

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

23 tháng 9 2021

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2017}-\dfrac{x+2020}{2016}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2020\)(do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\))

23 tháng 9 2021

Cộng 1 vào mỗi số hạng là ra

18 tháng 10 2017

\(\dfrac{x-2}{2018}=\dfrac{x-3}{2017}=\dfrac{x-4}{2016}=\dfrac{x-5}{2015}\)

\(\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=\dfrac{x-4}{2016}+\dfrac{x-5}{2015}\)

\(\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=\left(\dfrac{x-4}{2016}-1\right)+\left(\dfrac{x-5}{2015}-1\right)\)

\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=\dfrac{x-2020}{2016}+\dfrac{x-2020}{2015}\)

\(\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}-\dfrac{x-2020}{2015}=0\)

\(\left(x-2020\right)\left(\dfrac{1}{2018}+\dfrac{1}{2017}-\dfrac{1}{2016}-\dfrac{1}{2015}\right)=0\)

\(\dfrac{1}{2018};\dfrac{1}{2017};\dfrac{1}{2016};\dfrac{1}{2015}>0\)

Nên \(x-2020=0\)

\(x=0+2020\)

\(x=2020\)

Vậy x bằng 2020

21 tháng 10 2017

Tui đánh giá cao câu trả lời này của bạn :v

30 tháng 12 2017

\(a,\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=-3+3\)

\(\Leftrightarrow\dfrac{1+x+2017}{2017}+\dfrac{2+x+2016}{2016}+\dfrac{3+x+2015}{2015}=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Leftrightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b,\(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{2x+4}{5}}{15}=\dfrac{\dfrac{11x-3}{2}}{5}-\dfrac{5x-5}{5}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-\dfrac{10x-10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3-10x+10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{x+7}{10}\)

\(\Leftrightarrow10\left(2x+4\right)=75\left(x+7\right)\)

\(\Leftrightarrow20x+40=75x+525\)

\(\Leftrightarrow20x-75x=525-40\)

\(\Leftrightarrow-55x=485\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

30 tháng 12 2017

a) \(\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Rightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b) \(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-x+1\)

\(\Leftrightarrow\dfrac{4x+8}{150}=\dfrac{165x-45}{150}-\dfrac{150x-150}{150}\)

\(\Leftrightarrow4x+8=165x-45-150x+150\)

\(\Leftrightarrow4x-165x+150x=-45+150-8\)

\(\Leftrightarrow-11x=97\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

\(S=\left\{-\dfrac{97}{11}\right\}\)

16 tháng 7 2017

\(x=2014\)

16 tháng 7 2017

Ta có:

\(\dfrac{x}{2014}+\dfrac{x+1}{2015}+\dfrac{x+2}{2016}+\dfrac{x+3}{2017}+\dfrac{x+4}{2018}=5\)

\(\Leftrightarrow\left(\dfrac{x}{2014}-1\right)+\left(\dfrac{x+1}{2015}-1\right)+\left(\dfrac{x+2}{2016}-1\right)+\left(\dfrac{x+3}{2017}-1\right)+\left(\dfrac{x+4}{2018}-1\right)=0\)\(\Leftrightarrow\dfrac{x-2014}{2014}+\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}+\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}=0\)\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)=0\) (1)

\(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}>0\) (2)

Từ (1) và (2) => \(x-2014=0\) \(\Leftrightarrow x=2014\)

24 tháng 6 2018

Giải:

\(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)

\(\Leftrightarrow2+\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=2+\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)

\(\Leftrightarrow\dfrac{x+2015}{5}+1+\dfrac{x+2016}{4}+1=\dfrac{x+2017}{3}+1+\dfrac{x+2018}{2}+1\)

\(\Leftrightarrow\dfrac{x+2015+5}{5}+\dfrac{x+2016+4}{4}=\dfrac{x+2017+3}{3}+\dfrac{x+2018+2}{2}\)

\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}=\dfrac{x+2020}{3}+\dfrac{x+2020}{2}\)

\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}-\dfrac{x+2020}{3}-\dfrac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy ...

1 tháng 11 2017

\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{5}+\dfrac{x}{2017}\)

\(\Rightarrow x.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}\right)=x.\left(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{2017}\right)\)

\(\dfrac{1}{2}>\dfrac{1}{3};\dfrac{1}{4}>\dfrac{1}{5};\dfrac{1}{2016}>\dfrac{1}{2017}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}>\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{2017}\)

\(\Rightarrow x=0\)

Vậy ................

a: ĐKXĐ: x<>1; x<>2; x<>-2; x<>-1

\(P=\dfrac{2017x+2017-2016x+2016-2014x-2016}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2015x+2017}{x^2-4}\)