Cho \(\Delta ABC\)nhọn, các đường cao BD, CE cắt nhau tại H. Vẽ điểm K sao cho AB là đường trung trực của HK. Chứng minh \(\widehat{KAB}=\widehat{KCB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH cắt BC tại M.
Xét \(\Delta ABC\) có 2 đường cao BD và CE cắt nhau tại H
=> H là trực tâm của tam giác ABC
=> \(AH⊥BC\)
=> \(\Delta ABM\)vuông tại M
=> \(\widehat{BAM}+\widehat{ABM}=90^o\)
Mà \(\widehat{KCB}+\widehat{ABM}=90^o\)
Nên \(\widehat{BAM}=\widehat{KCB}\)
Ta có: AK = AH ( A thuộc đường trung trực của đoạn HK)
=> \(\Delta AKH\)cân tại A
Mà AE là đường trung tuyến nên cũng là đường phân giác
=> \(\widehat{KAB}=\widehat{BAM}\)
Mà \(\widehat{KCB}=\widehat{BAM}\)
Nên \(\widehat{KAB}=\widehat{KCB}\)\(\left(đpcm\right)\)
vÌ H LÀ giao điểm củabd và ce => h là trực tâm=>ah vuông góc bc .
gọi e là giao điểm ah vf bc. ta có góc bae +abc=90
góc abc+kcb=90
=> bah=kcb 1
ab là đường trung trực hk
=> ak=ah=> tam giác akh cân => ab đồng thời là đương phân giác => kab=hab 2
tuw1 vaf2 => kab=kcb
a: Xét ΔABC có
BD là đường cao ứng với cạnh AC
CE là đường cao ứng với cạnh AB
BD cắt CE tại H
Do đó: H là trực tâm của ΔBAC
hay AH\(\perp\)BC tại K
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{HBK}\) chung
Do đó: ΔBKH\(\sim\)ΔBDC
Suy ra: \(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)
hay \(BH\cdot BD=BK\cdot BC\)
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
a) Xét (O) có
ΔBDC nội tiếp đường tròn(gt)
BC là đường kính
Do đó: ΔBDC vuông tại D(Định lí)
Xét (O) có
ΔBEC nội tiếp đường tròn(gt)
BC là đường kính
Do đó: ΔBEC vuông tại E(Định lí)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)
Do 2 đường cao BD và CE cắt nhau tại H => H là trực tâm của tam giác ABC. Nối A với H sao cho AH cắt BC tại F, ta có AF là đường cao thứ 3 của tam giác ABC => \(AF\perp BC\)
Vì \(\Delta ABF\) vuông tại D \(\Rightarrow\widehat{BAF}+\widehat{ABF}=90^0\) hay \(\widehat{ABF}=\widehat{HAE}\) (1)
\(\Delta BEC\) vuông tại E \(\Rightarrow\widehat{BCE}+\widehat{CBE}=90^0\) hay \(\widehat{ABF}+\widehat{KCB}=90^0\) (2)
Từ (1) và (2) => \(\widehat{HAE}=\widehat{KCB}\) (3)
Ta dễ chứng minh được \(\Delta KAE=\Delta HAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{KAE}=\widehat{HAE}\) hay \(\widehat{KAB}=\widehat{HAE}\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{KAB}=\widehat{KCB}\)
Vậy...
sao \(\widehat{ABF}=\widehat{HAE}\) đc bạn