Câu 1:
Cho biểu thức: \(f_{\left(x\right)}=\) \(\dfrac{2\left(1-\sqrt{x}\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+4}{\sqrt{x}-4}+\dfrac{x\left(\sqrt{x}-3\right)-2\left(5\sqrt{x}+8\right)}{x-3\sqrt{x}-4}\)
a) Rút gọn biểu thức \(f_{\left(x\right)}\)
b) Tìm x để \(f_{\left(x\right)}\) đạt GTNN
Câu 2:
Giải PT: \(2\left(x-1\right)^2=3\left(\sqrt{x^3+2x^2-2x+3}+2\right)\)
Câu 3:
Tìm nghiệm nguyên của PT: \(9x+5y+18=2xy\)
Câu 4:
a) Giải PT: \(2x^2+2x+1=\sqrt{4x+1}\)
b) Giải hệ phương trình: \(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)
Câu 5:
a) Cho S = \(1+3+3^2+3^3+3^4+...+3^{98}+3^{99}\)
Chứng minh: S \(⋮\) 40
b) Rút gọn phân thức: \(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}\)
Câu 3: 9x + 5y + 18 = 2xy
<=> 9(x - 2) - 2y(x - 2) = -y - 36
<=> (x - 2)(9 - 2y) = -y - 36
<=> x - 2 = \(\dfrac{-y-36}{9-2y}\) (1)
Do x - 2 nguyên nên \(-y-36⋮9-2y\)
\(\Rightarrow2y+72⋮9-2y\)\(\Rightarrow2y+72+9-2y⋮9-2y\)
\(\Rightarrow81⋮9-2y\)\(\Rightarrow9-2y\in\left\{1;-1;3;-3;9;-9;27;-27;81;-81\right\}\)
\(\Rightarrow y\in\left\{4;5;3;6;0;9;-9;18;-36;45\right\}\)
Thay lần lượt giá trị của y vào (1) ta được các cặp giá trị (x;y) thỏa mãn là: (43;5); (-11;3); (7;9); (1;-9); (3;45)
Câu 4:
a) 2x2 + 2x + 1 = \(\sqrt{4x+1}\) (đk: \(x\ge-\dfrac{1}{4}\))
\(\Rightarrow\left(2x^2+2x+1\right)^2=4x+1\)
<=> 4x4 + 4x2 + 1 + 8x3 + 4x + 4x2 - 4x - 1 = 0
<=> 4x4 + 8x3 + 8x2 = 0 (*)
+) x = 0, thay vào (*) thỏa mãn
+) x \(\ne0\), chia cả 2 vế của (*) cho 4x2 ta được:
x2 + 2x + 2 = 0
<=> (x + 1)2 + 1 = 0, vô nghiệm
Vậy pt có nghiệm x = 0