tìm số hữu tỉ x biết: \(\dfrac{x+2}{11}\)+\(\dfrac{x+2}{12}+\dfrac{x+2}{13}\)= \(\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
(x - 1)5 = - 243
=> (x - 1)5 = (-3)5
=> x - 1 = - 3
=> x = -3 + 1
=> x = -2
Vậy x = -2
b) Ta có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)
=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)
=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)
=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)
=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0
mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0
=> x + 2 = 0
=> x = -2
Vậy x = -2
c) Ta có :
\(\left|3x-2\right|+5x=4x-10\)
=> \(\left|3x-2\right|=4x-5x-10\)
=> \(\left|3x-2\right|=-x-10\)
=> 3x - 2 = -x - 10
hoặc 3x - 2 = -(-x -10)
*) Nếu 3x - 2 = -x - 10
=> 3x + x = -10 + 2
=> 4x = -8
=> x = -2
*) Nếu 3x - 2 = -(-x -10)
=> 3x - 2 = x +10
=> 3x - x = 10 + 2
=> 2x = 12
=> x = 6
Vậy x = -2 hoặc x = 6
a, \(\left(x-1\right)^5=-243\)
\(\Leftrightarrow\left(x-1\right)^5=-3^5\)
\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)
b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Vì \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
Vậy...
x-2/11 + x-2/12 +x-2/13 = x-2/14 + x-2/15
=> x-2 /11 + x-2/12 +x-2/13 - x-2/14 - x-2/15 = 0
=> (x-2). ( 1/11 + 1/12 + 1/13 - 1/14-1/15) = 0
=> x-2 = 0 => x=2
1/ 11 + 1/12 +1/13 -1/14 - 1/15 = 0
Vì 1/11; 1/12; 1/13; 1/14; 1/15 > 1 nên 1/11+1/12+1/3-1/14-1/15= 0 (vô lí)
Vậy x=2
Nhớ like
Giải:
Ta có:
\(\dfrac{x-2}{11}+\dfrac{x-2}{12}+\dfrac{x-2}{13}=\dfrac{x-2}{14}+\dfrac{x-2}{15}\)
\(\Leftrightarrow\dfrac{x-2}{11}+\dfrac{x-2}{12}+\dfrac{x-2}{13}-\dfrac{x-2}{14}-\dfrac{x-2}{15}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
Nên \(x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\).
Chúc bạn học tốt!
Bài 1:
a, Ta có:
\(\dfrac{-8}{15}=-\dfrac{5}{18}+-\dfrac{1}{6}\)
b, Ta có:
\(-\dfrac{8}{15}=\dfrac{11}{15}-\dfrac{19}{15}\)
Bài 2:
a, \(\dfrac{11}{13}-\left(\dfrac{5}{12}-x\right)=-\left(\dfrac{15}{18}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\dfrac{5}{12}+x=-\dfrac{15}{18}+\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{18}+\dfrac{11}{13}+\dfrac{5}{12}-\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{8}+\dfrac{5}{12}=-\dfrac{35}{24}\)
b, \(2x-3=x+\dfrac{1}{2}\)
\(\Rightarrow2x-x=\dfrac{1}{2}+3\Rightarrow x=\dfrac{7}{2}\)
Chúc bạn học tốt!!!
1) \(\dfrac{11}{12}\times\dfrac{28}{13}-\dfrac{11}{12}\times\dfrac{15}{13}=\dfrac{11}{12}\times\left(\dfrac{28}{13}-\dfrac{15}{13}\right)=\dfrac{11}{12}\times\dfrac{13}{13}=\dfrac{11}{12}\times1=\dfrac{11}{12}\)
Vậy biểu thức trên có kết quả là : \(\dfrac{11}{12}\)
2) \(x+653=87\times11\)
\(x+653=957\)
\(x=957-653\)
\(x=304\)
Vậy `x = 304 `
3) \(\text{70 000 + 800 + 20 + 9}=70829\)
b) \(\dfrac{4}{14}-\dfrac{1}{5}+\dfrac{11}{15}-\dfrac{24}{5}\)
\(=-\dfrac{1}{5}-\dfrac{24}{5}+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=-\left(\dfrac{1}{5}+\dfrac{24}{5}\right)+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=-\left(\dfrac{1+24}{5}\right)+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=-\dfrac{25}{5}+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=-5+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=\dfrac{-70}{14}+\dfrac{4}{14}+\dfrac{11}{15}\)
\(=\dfrac{-70+4}{14}+\dfrac{11}{15}\)
\(=\dfrac{-\left(70-4\right)}{14}+\dfrac{11}{15}\)
\(=\dfrac{-66}{14}+\dfrac{11}{15}\)
\(=\dfrac{-990}{210}+\dfrac{154}{210}\)
\(=\dfrac{-990+154}{210}\)
\(=\dfrac{-\left(990-154\right)}{210}\)
\(=\dfrac{-836}{210}\)
\(=\dfrac{-418}{105}\)
Có:
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Leftrightarrow\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}=0\end{matrix}\right.\)
Vì \(\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)\ne0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=0+2=2\)
Vậy \(x=2\).
Học tốt!
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{1}{11}+\dfrac{1}{12}\right)\left(x+2\right)+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{23\left(x+2\right)}{132}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\left(\dfrac{23}{132}+\dfrac{1}{13}\right)\left(x+2\right)=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\left(x+2\right)\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{29\left(x+2\right)}{210}\)
\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}-\dfrac{29\left(x+2\right)}{210}=0\)
\(\Rightarrow\left(\dfrac{431}{6.286}-\dfrac{29}{6.35}\right)\left(x+2\right)=0\)
\(\Rightarrow\dfrac{1}{6}\left(\dfrac{431}{286}-\dfrac{29}{35}\right)\left(x+2\right)=-2\)