Cho 3 số a,b,c; chứng minh:
a, \(a^2+b^2+c^2\ge ab+ac+bc\)
b, \(\left(ab+ac+bc\right)^2\ge3abc\left(a+b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 3 so tu nhien a , b , c mình chỉ cho 3 so tu nhien nho thoy a = 8 ; b = 13 ; c = 12
a ) (a+b+c) : 5 = (8 + 13 + 12) : 5 = 33 : 5 = 6 ( du 3 )
( a + b - c ) : 5 =(8 + 13 - 12 ) : 5 = 9 : 5 = 2 ( du 1)
(a + c - b) : 5 = ( 8 + 12 - 13 ) : 5 =7 : 5 = 1( du 2)
b)2 so co tong chia het cho 5 co 2 so : 8 + 12 va 13 + 12
2 so co hieu chia het cho 3 la co 1 so : 13 - 8
chuc ban hoc tot minh chi hoc lop 5 thoy sai cho nao may ban sua gium minh nha
bài 1 biến đổi tương đương
bài 2: Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
a. \(a^2+b^2+c^2\ge ab+bc+ac\) (1)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (2)
Vì \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(a-c\right)^2\ge0\\\left(b-c\right)^2\ge0\end{matrix}\right.\)nên bđt (2) đúng.
=> Bđt (1) được chứng minh.
b. \(\left(ab+bc+ac\right)^2\ge3abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2b^2ac+c^2ab\ge3a^2bc+3b^2ac+3c^2ab\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2b^2ac+2c^2ab-3a^2bc-3b^2ac-3c^2ab\ge0\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2-a^2bc-b^2ac-c^2ab\ge0\)
\(\Leftrightarrow2a^2b^2+2b^2c^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2+\left(ab-ac\right)^2+\left(bc-ac\right)^2\ge0\) (luôn đúng)
=> đpcm