1 bài toán về ngụy bn này:
CM:cạnh góc vuông = cạnh huyền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Giả sử cạnh huyền BC > AB 1 cm , ta có :
BC - AB = 1
( AB + AC ) - BC = 4 cm
=> AC = 5cm
Ta có : \(\hept{\begin{cases}BC-AB=1\\BC^2=AB^2+AC^2\end{cases}}\)( đlí Py - ta - go )
BC - AB = 1 => BC = AB + 1
( AB + 1 )2 = AB2 + AC2
AB2 + 2AB + 1 = AB2 + AC2
2AB + 1 = AC2
2AB = AC2 - 1 = 52 - 1 = 24
\(\Rightarrow AB=\frac{24}{2}=12\Rightarrow BC=12+1=13\)
Vậy : AB = 12cm
AC = 5cm
BC = 13cm
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Gọi độ dài 1 cạnh góc vuông là x (cm, x>7)
độ dài 1 cạnh góc vuông còn lạ là x-7 (cm)
Theo đè là ta có
\(x^2+\left(x-7\right)^2=13^2\)(ĐL Pytago)
\(\Leftrightarrow x^2+x^2-14x+49=169\)
\(\Leftrightarrow2x^2-14x-120=0\)
\(\Leftrightarrow x^2-7x-60=0\)
\(\Leftrightarrow x^2-12x+5x-60=0\)
\(\Leftrightarrow x.\left(x-12\right)+5.\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right).\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-12=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=12\left(TM\right)\\x=-5\left(L\right)\end{cases}}\)
Vậy độ dài 1 cạnh góc vuông là 12cm
dộ dài 1 cạnh góc vuông còn lại là \(12-7=5\left(cm\right)\)
Nhớ k cho mình nhé
Bg
Gọi cạnh huyền của tam giác là a, hai cạnh góc vuông là b và c (\(a,b,c\inℕ^∗\))
Theo đề bài: a = c + 1 và b + c = a + 4
Xét b + c = a + 4:
Mà a = c + 1
=> b + c = c + 1 + 4
=> b + c = c + 5
=> b - 5 = c - c
=> b - 5 = 0
=> b = 5 (cm)
Theo định lý Pi - ta - go, trong một tam giác vuông, ta có:
a2 = b2 + c2
Vì a = c + 1
=> (c + 1)2 = 52 + c2
=> c2 + 2c + 1 = 25 + c2
=> 2c + 1 = 25
=> 2c = 24
=> c = 12 (cm)
Vậy các cạnh góc vuông của tam giác này là 5 cm và 12 cm
Bonus:
Cạnh huyền của góc vuông đó là: a = c + 1 = 12 + 1 = 13 (cm)
Vậy cạnh huyền của tam giác này là 13 cm
tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền
xét tam giác ABC có:
AB2+AC2 = BC2 ( đ/lý py-ta-go)
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> BC = 25
=> BC = \(\sqrt{25}=5cm\)
tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)
=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)
hình như mk làm sai hoặc bn sai đề
để ghi lại khúc cuối
AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)
có \(5:2=\frac{5}{2}\) nên mới có 5/2
gọi độ dài hai cạnh góc vuông là x và y
=> \(\hept{\begin{cases}x^2+y^2=13^2=169\\\frac{1}{2}\left(x+1\right)\left(y-2\right)=\frac{1}{2}xy\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2=169\\y=2x+2\end{cases}\Rightarrow}\hept{\begin{cases}x^2+\left(2x+2\right)^2=169\\y=2x+2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}5x^2+8x-165=0\\y=2x+2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=12\end{cases}}}\)
Học thêm rùi
Tam giác vuông ABC, BG là đường phân giác góc ABC cắt đường trung trực cạnh AC tại G ở trong tam giác; Từ G kẻ GM vuông góc với cạnh AB và GN vuông góc với cạnh huyền BC; nối G với A, G với C.
Chứng minh AB = CB
Bài làm:
Xét 2 tam giác vuông ADG và CDG ta có: cạnh DG chung và AD = CD vì DG là đường trung trực AC (gỉa thiết).
Do đó 2 tam giác vuông ADG = CDG (Trường hợp bằng nhau của tam giác vuông- cạnh huyền và một cạnh góc vuông bằng
nhau) nên ta có: AG = CG (1)
Xét 2 tam giác vuông BMG và BNG ta có: cạnh huyền
BG chung, góc MBG = góc NBG vì BG là đường phân giác góc ABC (gỉa thiết). Do đó 2 tam giác vuông BMG = BNG (trường hợp bằng nhau của tam giác vuông – cạnh huyền và một góc nhọn bằng nhau), nên ta có: MG = NG (2) và MB = NB (3)
Do đó 2 tam giác vuông AMG = CNG (Trường hợp bằng nhau của tam giác vuông - cạnh huyền và một cạnh góc vuông bằng nhau), nên ta có AM = CN (4)
Từ (4) và (3) cộng 2 vế ta có AM + MB = CN + NB mà AM + MB = AB chính là cạnh của tam giác vuông ABC và CN + NB = CB chính là cạnh huyền của tam giác vuông ABC. Vậy AB = CB