Giải pt
\(\sqrt{x-1}+9\sqrt{x+1}=4x+9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện: \(\hept{\begin{cases}x-1\ge0\\x+1\ge0\\4x+9\ge0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x\ge1\\x\ge-1\\x\ge\frac{-9}{4}\end{cases}}\)
\(\Rightarrow x\ge1\)
\(\sqrt{x-1}+9\sqrt{x+1}=4x+9\)
với điều kiện trên ta có :
\(x-1+81\left(x+1\right)+18\sqrt{\left(x-1\right)\left(x+1\right)}\)\(=16x^2+81+72x\)
\(\Leftrightarrow82x+80+18\sqrt{\left(x^2-1\right)}=16x^2+81+72x\)
\(\Leftrightarrow18\sqrt{\left(x^2-1\right)}=16x^2-10x+1\)
\(\Leftrightarrow324x^2-324=256x^4+100x^2-320x^3+32x^2-20x+1\)
\(\Leftrightarrow265x^4-320x^3-192x^2-20x+325=0\)
Dùng máy tính Vinacal giải ra 4 nghiệm x
Nếu nghiệm nào >= 1 thì nhận
a) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)
\(TH_1:x\le\dfrac{1}{2}\)
\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)
\(TH_2:x\ge\dfrac{1}{2}\)
\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{-2;3\right\}\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)
\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
\(ĐK:\forall x\in R\)
\(PT\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-3\\1-2x=x-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{4}{3}\end{matrix}\right.\)(t/m)
a) điều kiện xác định : \(x\ge1\)
ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm
b) điều kiện xác định \(x\ge3\)
ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)
\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm
c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)
ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{2x-9}=\sqrt[3]{x-5}+\sqrt[3]{4x-3}\)
Đặt \(\sqrt[3]{3x+1}=a;\sqrt[3]{2x-9}=b;\sqrt[3]{x-5}=c;\sqrt[3]{4x-3}=d\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c+d\\\left(a+b\right)^3-3ab\left(a+b\right)=\left(c+d\right)^3-3cd\left(c+d\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+b=c+d=0\\\left[{}\begin{matrix}a+b=c+d\ne0\\ab=cd\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3+b^3=0\\a^3b^3=c^3d^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\\left(3x+1\right)\left(2x-9\right)=\left(4x-3\right)\left(x-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\x^2-x-12=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1}-\dfrac{1}{2}+9\sqrt{x+1}-\dfrac{27}{2}=4x-5\)
\(\Leftrightarrow\dfrac{x-\dfrac{5}{4}}{\sqrt{x-1}+\dfrac{1}{2}}+\dfrac{9\left(x-\dfrac{5}{4}\right)}{\sqrt{x+1}+\dfrac{3}{2}}=4\left(x-\dfrac{5}{4}\right)\)
\(\Leftrightarrow\left(x-\dfrac{5}{4}\right)\left(\dfrac{1}{\sqrt{x-1}+\dfrac{1}{2}}+\dfrac{9}{\sqrt{x+1}+\dfrac{3}{2}}-4\right)=0\)
Dễ thấy: \(\dfrac{1}{\sqrt{x-1}+\dfrac{1}{2}}+\dfrac{9}{\sqrt{x+1}+\dfrac{3}{2}}-4\) vô nghiệm với \(x\ge1\)
Nên \(x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{4}\)
Nếu k phiền thì giúp mk bà này luôn nha :)
https://hoc24.vn/hoi-dap/question/277024.html