Phân tích đa thức thành nhân tử
y^2-9x^2+6x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-9x^2+6x+y^2-1\)
\(=-\left(9x^2-6x+1-y^2\right)\)
\(=-\left(3x-1-y\right)\left(3x-1+y\right)\)
\(3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\)
1. \(=3x\left(2x+5\right)\)
2. \(=\left(3x-1\right)\left(3x+1\right)\)
3. \(=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
1, = 3x.(2x + 5)
2. = (3x)2 - 12 = (3x - 1).(3x +1 )
3, =(x2 + 6x + 9) - y2 = (x + 3)2 - y2 =(x + y -3 ). (x - y +3)
\(A=9x^2+3yx+6x+y+1\)
\(\Rightarrow A=\left(9x^2+3x\right)+\left(3xy+y\right)+\left(3x+1\right)\)
\(\Rightarrow A=3x\left(3x+1\right)+y\left(3x+1\right)+\left(3x+1\right)\)
\(\Rightarrow A=\left(3x+y+1\right)\left(3x+1\right)\)
\(9x^2-6x+1\)
\(=\left(3x\right)^2-2.3x.1+1^2\)
\(=\left(3x-1\right)^2\)
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
\(9x^2-6x^2-3\)
\(=3x^2-3\)
\(=3.\left(x^2-1\right)\)
\(=3.\left(x-1\right).\left(x+1\right)\)
\(9x^2-6x^2-3\)
\(=3x^2-3\)
\(=3.\left(x^2-1\right)\)
\(=3.\left(x-1\right).\left(x+1\right)\)
Nguồn: kudo shinichi
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
\(y^2-9x^2+6x-1\)
\(=y^2-\left(3x-1\right)^2\)
\(=\left(y-3x+1\right)\left(y+3x-1\right)\)