Các bn cho mk hỏi tí
a) tìm x
\(105-\left(3^x+1\right)=2^{2015}\div4^{1007}\)
b) Tìm x;y thuộc Z
\(\left(x-1\right)\times\left(y+2\right)=7\)
giúp mk với các bn nhé
mk hứa là sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Bạn Kiên giải đúng nhưng chưa rõ nên mình giải lại.
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{202}{201}\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{202}{201}:2=\frac{202}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=-\frac{1}{402}=\frac{-1}{402}=\frac{1}{-402}\)
\(\Rightarrow\frac{1}{x+1}=\hept{\begin{cases}\frac{-1}{402}\\\frac{1}{-402}\end{cases}}\Rightarrow x+1=\hept{\begin{cases}402\\-402\end{cases}}\Rightarrow\hept{\begin{cases}x=402-1\\x=\left(-402\right)-1\end{cases}}\Rightarrow x=\hept{\begin{cases}401\\-403\end{cases}}\)
\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{202}{201}\)\(\Rightarrow A=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{202}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=\frac{-1}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{-402}\)
\(\Rightarrow x+1=-402\)
\(\Rightarrow x=-403\)
Câu a hình như sai đề phải ko???
Câu a hình như sai đề rồi bạn à? Dùng máy tính thử lại không đc