Tính theo cách hợp lí:
B= 52 + 10 2+ 15 2+......+502
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)
Gọi 1+2+3+...+10 là P
Số số hạng là: (10 - 1) : 1 +1 = 10 (số)
P = (10+1) . 10 : 2 = 55
P = 55
Gọi \(1\cdot2+2\cdot3+....+9\cdot10\) là C
\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)
\(=>A=P+C\\ =>A=55+330\\ A=385\)
b)
\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)
\(\left(1+2^2+3^2+....+10^2\right)=A\)
\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)
\(B=\dfrac{-1}{9}+\dfrac{8}{7}+\dfrac{10}{9}+\dfrac{-29}{7}\\ B=\left(\dfrac{-1}{9}+\dfrac{10}{9}\right)+\left(\dfrac{8}{7}+\dfrac{-29}{7}\right)\\ B=1+\dfrac{-11}{7}=1\dfrac{-11}{7}\)
B=\(-\dfrac{1}{9}+\dfrac{8}{7}+\dfrac{10}{9}+\dfrac{-29}{7}\)
\(B=\left(-\dfrac{1}{9} +\dfrac{10}{9}\right)+\left(\dfrac{8}{7}-\dfrac{29}{7}\right)\)
\(B=1+\left(-3\right)\)
\(B=-2\)
1+2-3-4+5+6-7-8+9+............+498-499-500+501+502
=1+(2-3-4+5)+(6-7-8+9)+...........+(498-499-500+501)+502
=1+0+0+.......+0+502
=503
\(B=\left(\frac{1}{2}\right)^{2015}.\left(\frac{2}{3}\right)^{2016}.\left(-3\right)^{2015}\)
\(B=\left(-3\right)^{2015}.\left(\frac{2}{3}\right)^{2016}.\frac{1}{2^{2015}}\)
\(B=\left(-3\right)^{2015}.\frac{1}{2^{2015}}.\frac{2^{2016}}{3^{2016}}\)
\(B=\left(-3^{2015}\right).\frac{1}{2^{2015}}.\frac{2^{2016}}{3^{2016}}\)
\(B=-\frac{1}{2^{2015}}.\frac{2^{2016}}{3^{2016}}.3^{2015}\)
\(B=-\frac{1.2^{2016}.3^{2015}}{2^{2015}.3^{2016}}\)
\(B=-\frac{2^{2016}.3^{2015}}{3^{2016}.2^{2015}}\)
\(B=\frac{3^{2015}.2}{3^{2016}}\)
\(B=-\frac{2}{3}\)
\(B=-\left(1+4+7+...+100\right)\\ B=-\dfrac{\left(100+1\right)\left[\left(100-1\right):3+1\right]}{2}=-\dfrac{101\cdot34}{2}=-1717\\ C=10+10+10+10-103=50-103=-53\)
Bạn có thể viết rõ ra ko chứ ntn tớ ko nhìn được
Cho A = 1.2 + 2.3 + ...+ 99.100
=> 3A = 1.2 .3 + 2.3.3 + ...+ 99.100.3
3A = 1.2.( 3-0) + 2.3.(4-1) + ....+ 99.100.( 101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ...+ 99.100.101 - 98.99.100
3A = ( 1.2.3 + 2.3.4 + 99.100.101) - ( 1.2.3 + ....+ 98.99.100)
3A = 99.100.101
=> A = 99.100.101 . 1/3
thay A vào B
\(B=(\frac{99.100.101.\frac{1}{3}}{99.100.101}):\frac{1}{3}\)
\(B=\frac{1}{3}:\frac{1}{3}\)
\(B=1\)
\(B=\left(\frac{1.2+2.3+...+99.100}{99.100.101}\right)\div\frac{1}{3}\)
\(\text{Đặt}:C=1.2+2.3+...+99.100\)
\(\Rightarrow3C=1.2.3+2.3.3+...+99.100.3\)
\(\Rightarrow3C=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(\Rightarrow3C=1.2.3+2.3.4+...+99.100.101\)
\(\Rightarrow3C=\left(1.2.3+2.3.4+...+99.100.101\right)\)\(-\)\(\left(1.2.3+2.3.4+....+98.99.100\right)\)
\(\Rightarrow3C=99.100.101\)
\(\Rightarrow C=\frac{99.100.101}{3}\)
Thay C vào biểu thức B ta được :
\(B=\left(\frac{\frac{99.100.101}{3}}{99.100.101}\right)\div\frac{1}{3}=\frac{1}{3}\div\frac{1}{3}=1\)
Vậy B= \(1\)
Bài 1:
1: =15+37+52-37-17=52-2=50
2: =38-42+14-25+27+15=62-42+29=20+29=49
Bài 1: Bỏ ngoặc rồi tính
3) (21-32) - (-12+32)=21-32-(-12)-32=21-32+12-32=-31
4) (12+21) - (23-21+10)=12+21-23+21-10=21
5) (57-725) - (605-53)=57-725-605+53=-1220
6) (55+45+15) - (15-55+45)=55+45+15-15+55-45=55+55=110
Bài 2: Tính các tổng sau một cách hợp lí
1) (-37) + 14 + 26 + 37=(-37+37)+(14+26)=0+40=40
2) (-24) +6 + 10 + 24=(-24+24)+(6+10)=0+16=16
3) 15 + 23 + (-25) + (-23)=(15-25)+(23-23)=-10+0=-10
4) 60 + 33 + (-50) + (-33)=(60-50)+(33-33)=10+0=10
5) (-16) + (-209) + (-14) + 209=(-16-14)+(-209+209)=-30+0=-30
6) (-12) + (-13) + 36 + (-11)=(-11-12-13)+36=-36+36=0