K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

a, \(6⋮\left(x-1\right)\\ =>\left(x-1\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\\ =>\left[{}\begin{matrix}x-1=1\\x-1=2\\x-1=3\\x-1=6\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\\x=4\\x=7\end{matrix}\right.\\ =>x\in\left\{2;3;4;7\right\}\)

b, \(14⋮\left(2x+3\right)\\ =>\left(2x+3\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\\ =>\left[{}\begin{matrix}2x+3=1\\2x+3=2\\2x+3=7\\2x+3=14\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\left(loại\right)\\x=-\dfrac{1}{2}\left(loại\right)\\x=2\left(nhận\right)\\x=\dfrac{11}{2}\left(loại\right)\end{matrix}\right.\\ =>x=2\)

7 tháng 10 2017

a. x=2

b. x=2:3;7

Giúp mk vs ,mk cần gấpoho

a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)

\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)

\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)

\(=\dfrac{-3}{x-1}\)

19 tháng 11 2018

1 .x+5  và 2y+1 là Ư(42) lập bảng tính

2.vd tc chia hết 

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a)

\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)

Vậy \(x = 2\)

b)

\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)

Vậy \(x = 3\)

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16

 

Một số dạng toán khó cho học sinh lớp 6 :Câu 1 : Tính bằng cách hợp lí :a/  \(\left(14^{19}-14^{18}\right):\left(14^5.14^{12}\right)\)b/   \(\left(2^{41}+3^8\right).\left(10^7-2^7\right).\left(2^4-4^2\right)\)Câu 2 : a/    Tích các số tự nhiên từ 6 đến 30 tận cùng bằng chữ số gì ?b/    Tích các số tự nhiên từ 7 đến 22 tận cùng bằng mấy chữ số 0 ?Câu 3 : a/    Cho \(a,b\in N\). Chứng tỏ rằng \(ab\left(a+b\right)⋮2\)b/   ...
Đọc tiếp

Một số dạng toán khó cho học sinh lớp 6 :

Câu 1 : Tính bằng cách hợp lí :

a/  \(\left(14^{19}-14^{18}\right):\left(14^5.14^{12}\right)\)

b/   \(\left(2^{41}+3^8\right).\left(10^7-2^7\right).\left(2^4-4^2\right)\)

Câu 2 : 

a/    Tích các số tự nhiên từ 6 đến 30 tận cùng bằng chữ số gì ?

b/    Tích các số tự nhiên từ 7 đến 22 tận cùng bằng mấy chữ số 0 ?

Câu 3 : 

a/    Cho \(a,b\in N\). Chứng tỏ rằng \(ab\left(a+b\right)⋮2\)

b/     Tìm \(x,y\in N\) , biết rằng \(:xy\left(x+y\right)=20112009\)

Câu 4 :

a/     Từ 1 đến 1000 có bao nhiêu số chia hết cho 2 ?  Bao nhiêu số chia hết cho 5 ?

b/     Từ 50 đến 2009 có bao nhiêu số chia hết cho 2 ? Bao nhiêu số chia hết cho 5 ?

Câu 5

Cho  \(M=1+3+3^2+3^3+...+3^{100}\)

Tìm số dư khi chia M cho 13, chia M cho 40.

Câu 6 : Tìm các số tự nhiên x sao cho :

a/    \(x⋮21\) và \(40< x\le80\)

b/    \(x\inƯ\left(30\right)\) và  \(x>8\)

c/    \(x\in B\left(30\right)\)và \(40< x< 100\)

d/    \(x\inƯ\left(50\right)\) và  \(x\in B\left(25\right)\)

 


0
9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko