K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

1, \(\sqrt{10+2\sqrt{21}}=\sqrt{7+2\sqrt{7.3}+3}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}=\sqrt{7}+\sqrt{3}\)

2, \(\sqrt{9-2\sqrt{14}}=\sqrt{7-2\sqrt{7.2}+2}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

3, \(\sqrt{14-6\sqrt{5}}=\sqrt{14-2.3\sqrt{5}}=\sqrt{9-2.3\sqrt{5}+5}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)

4, \(\sqrt{21-12\sqrt{3}}-\sqrt{13-4\sqrt{3}}=\sqrt{21-2.3.2\sqrt{3}}-\sqrt{13-2.2\sqrt{3}}\)

\(=\sqrt{\left(3-2\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}=3-2\sqrt{3}-2\sqrt{3}+1=4-2\sqrt{3}\)

20 tháng 8 2021

1. \(\sqrt{10+2\sqrt{21}}=\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}=\left|\sqrt{3}+\sqrt{7}\right|=\sqrt{3}+\sqrt{7}\)

2. \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\left|\sqrt{7}-\sqrt{2}\right|=\sqrt{7}-\sqrt{2}\)

3. \(\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)

4. \(\sqrt{21-12\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{21-6\sqrt{12}}-\sqrt{13-2\sqrt{12}}\)

\(=\sqrt{\left(9-\sqrt{12}\right)^2}-\sqrt{\left(\sqrt{12}-1\right)^2}\)

\(=\left|9-\sqrt{12}\right|-\left|\sqrt{12}-1\right|\)

\(=9-\sqrt{12}-\sqrt{12}+1=10\)

5 tháng 12 2021

1.

\(V=22,4.\left(0,2+0,15\right)=7,84\left(l\right)\)

5 tháng 12 2021

2.

\(n_{CO_2}=\dfrac{6,72}{22,4}=0,3\left(mol\right)\)

18 tháng 10 2021

\(\dfrac{x}{-3}=\dfrac{y}{7}\Rightarrow\dfrac{x}{6}=\dfrac{y}{-14};\dfrac{y}{-2}=\dfrac{z}{5}\Rightarrow\dfrac{y}{-14}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{6}=\dfrac{y}{-14}=\dfrac{z}{35}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{6}=\dfrac{y}{-14}=\dfrac{z}{35}=\dfrac{2x}{12}=\dfrac{4y}{-56}=\dfrac{5z}{175}=\dfrac{-2x-4y+5z}{-12+56+175}=\dfrac{146}{219}=\dfrac{2}{3}\\ \Rightarrow\left\{{}\begin{matrix}x=6\cdot\dfrac{2}{3}=4\\y=-14\cdot\dfrac{2}{3}=-\dfrac{28}{3}\\z=35\cdot\dfrac{2}{3}=\dfrac{70}{3}\end{matrix}\right.\)

25 tháng 12 2021

x/-3=y/7;y/-2=z/5 và -2x-4y+5z=146
BCNN(7,2)=14
=>x/-3=y/7;y/-2=z/5
=>x/-3=y/7=>x/6=y/14(1)
=>y/-2=z/5=>y/-14=z/35(2)
từ(1) và (2) =>x/6=y/-14=z/35 và -2x-4y+5z=146
Sử dụng tính chất dãy tỉ số bằng nhau:
=>x/6=y/-14=z/35=>-2x-4y+5z/(-2).6-4.(-14)+5.35=146/219=2/3
=>x/6=2/3=>x=2.6/3=4
=>y/-14=2/3=>y=-14.2/3=-28/3
=>z/35=2/3=>z=35.2/3=70/3

28 tháng 11 2021

Dài lắm  mk ko viết được

14 tháng 11 2021

chịu :(

21 tháng 11 2021

hoi  400 thì chịu chứ 350 còn đ

\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)

=9-8m-4=-8m+5

Để phương trình có nghiệm kép thì -8m+5=0

hay m=5/8

Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)

hay x=3/2

2 tháng 3 2022

2 tháng 3 2022

8 tháng 10 2021

1 How long do you live in HN

2 How often did you go to the movies

3 What did Mrs Robinson buy

4 When was your father in Nghe An

5 How do they go to school

6 Why didn't she go to class

7 Who left home at 7o'clock yesterday

8 What subject does he study in the high school

9 What is your favorite hobby

10 How far is it

8 tháng 10 2021

cảm mơn nhìuu ạ:33

15 tháng 10 2023

1:

ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC=\dfrac{9^2}{5.4}=15\left(cm\right)\)

ΔABC vuông tại A 

=>\(BC^2=AB^2+AC^2\)

=>\(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

BC=BH+CH

=>CH=BC-BH=15-5,4=9,6cm

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=7,2(cm)

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF=7,2(cm)

Xét ΔABC vuông tại A có

\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

=>\(\widehat{HAC}=\widehat{ABC}\simeq53^0\)

2:

ΔHAB vuông tại H có HE là đường cao

nên \(HE\cdot BA=HA\cdot HB\)

=>\(HE\cdot9=5.4\cdot7.2\)

=>\(HE=5.4\cdot0.8=4.32\left(cm\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(HF\cdot AC=HA\cdot HC\)

=>\(HF\cdot12=9.6\cdot7.2\)

=>\(HF=0.8\cdot7.2=5.76\left(cm\right)\)

\(S_{AEHF}=HE\cdot HF=5.76\cdot4.32=24.8832\left(cm^2\right)\)

\(S_{AEF}=\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{2}\cdot5.76\cdot4.32=12.4416\left(cm^2\right)\)

3: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có FH là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

4: \(AB\cdot cosB+AC\cdot cosC\)

\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

6:

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

15 tháng 9 2024

không làm mà đòi có ăn thì ăn chubin nhé

 

31 tháng 10 2021

Đề đâu rồi bạn?